Configure Juicebox multi-environment setup. Use when setting up dev/staging/production environments, managing per-environment configurations, or implementing environment isolation. Trigger with phrases like "juicebox environments", "juicebox staging", "juicebox dev prod", "juicebox environment setup".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: juicebox-multi-env-setup description: | Configure Juicebox multi-environment setup. Use when setting up dev/staging/production environments, managing per-environment configurations, or implementing environment isolation. Trigger with phrases like "juicebox environments", "juicebox staging", "juicebox dev prod", "juicebox environment setup". allowed-tools: Read, Write, Edit, Bash(kubectl:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Juicebox Multi-Environment Setup
Overview
Configure Juicebox across development, staging, and production environments with proper isolation and security.
Prerequisites
- Separate Juicebox accounts or API keys per environment
- Secret management solution (Vault, AWS Secrets Manager, etc.)
- CI/CD pipeline with environment variables
- Environment detection in application
Environment Strategy
| Environment | Purpose | API Key | Rate Limits | Data |
|---|---|---|---|---|
| Development | Local dev | Sandbox | Relaxed | Mock/Test |
| Staging | Pre-prod testing | Test | Production | Subset |
| Production | Live system | Production | Full | Real |
Instructions
Step 1: Environment Configuration
// config/environments.ts
interface JuiceboxEnvConfig {
apiKey: string;
baseUrl: string;
timeout: number;
retries: number;
sandbox: boolean;
}
const configs: Record<string, JuiceboxEnvConfig> = {
development: {
apiKey: process.env.JUICEBOX_API_KEY_DEV!,
baseUrl: 'https://sandbox.api.juicebox.ai',
timeout: 30000,
retries: 1,
sandbox: true
},
staging: {
apiKey: process.env.JUICEBOX_API_KEY_STAGING!,
baseUrl: 'https://api.juicebox.ai',
timeout: 30000,
retries: 2,
sandbox: false
},
production: {
apiKey: process.env.JUICEBOX_API_KEY_PROD!,
baseUrl: 'https://api.juicebox.ai',
timeout: 60000,
retries: 3,
sandbox: false
}
};
export function getConfig(): JuiceboxEnvConfig {
const env = process.env.NODE_ENV || 'development';
const config = configs[env];
if (!config) {
throw new Error(`Unknown environment: ${env}`);
}
if (!config.apiKey) {
throw new Error(`JUICEBOX_API_KEY not set for ${env}`);
}
return config;
}
Step 2: Secret Management by Environment
// lib/secrets.ts
import { SecretsManager } from '@aws-sdk/client-secrets-manager';
const secretPaths: Record<string, string> = {
development: 'juicebox/dev/api-key',
staging: 'juicebox/staging/api-key',
production: 'juicebox/prod/api-key'
};
export async function getApiKey(): Promise<string> {
const env = process.env.NODE_ENV || 'development';
// In development, allow env var fallback
if (env === 'development' && process.env.JUICEBOX_API_KEY_DEV) {
return process.env.JUICEBOX_API_KEY_DEV;
}
// Production environments must use secret manager
const client = new SecretsManager({ region: process.env.AWS_REGION });
const result = await client.getSecretValue({
SecretId: secretPaths[env]
});
return JSON.parse(result.SecretString!).apiKey;
}
Step 3: Environment-Aware Client Factory
// lib/client-factory.ts
import { JuiceboxClient } from '@juicebox/sdk';
import { getConfig } from '../config/environments';
import { getApiKey } from './secrets';
let clientInstance: JuiceboxClient | null = null;
export async function getJuiceboxClient(): Promise<JuiceboxClient> {
if (clientInstance) return clientInstance;
const config = getConfig();
const apiKey = await getApiKey();
clientInstance = new JuiceboxClient({
apiKey,
baseUrl: config.baseUrl,
timeout: config.timeout,
retries: config.retries
});
// Add environment-specific middleware
if (process.env.NODE_ENV === 'development') {
clientInstance.use(logRequestsMiddleware);
}
return clientInstance;
}
Step 4: Kubernetes ConfigMaps
# k8s/base/configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: juicebox-config
data:
JUICEBOX_TIMEOUT: "30000"
JUICEBOX_RETRIES: "3"
---
# k8s/overlays/development/configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: juicebox-config
data:
JUICEBOX_BASE_URL: "https://sandbox.api.juicebox.ai"
JUICEBOX_SANDBOX: "true"
---
# k8s/overlays/staging/configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: juicebox-config
data:
JUICEBOX_BASE_URL: "https://api.juicebox.ai"
JUICEBOX_SANDBOX: "false"
---
# k8s/overlays/production/configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: juicebox-config
data:
JUICEBOX_BASE_URL: "https://api.juicebox.ai"
JUICEBOX_SANDBOX: "false"
JUICEBOX_TIMEOUT: "60000"
Step 5: Environment Guards
// lib/environment-guards.ts
export function requireProduction(): void {
if (process.env.NODE_ENV !== 'production') {
throw new Error('This operation is only allowed in production');
}
}
export function preventProduction(): void {
if (process.env.NODE_ENV === 'production') {
throw new Error('This operation is not allowed in production');
}
}
// Usage
async function resetTestData(): Promise<void> {
preventProduction();
await db.profiles.deleteMany({});
}
async function sendBulkOutreach(): Promise<void> {
requireProduction();
// ... production-only logic
}
Environment Checklist
## Environment Setup Verification
### Development
- [ ] Sandbox API key configured
- [ ] Mock data available
- [ ] Debug logging enabled
- [ ] Rate limits relaxed
### Staging
- [ ] Test API key configured
- [ ] Production-like data subset
- [ ] Monitoring enabled
- [ ] Matches production config
### Production
- [ ] Production API key in secret manager
- [ ] All guards enabled
- [ ] Monitoring and alerting
- [ ] Backup and recovery tested
Output
- Environment-specific configurations
- Secret management per environment
- Kubernetes overlays
- Environment guards
Resources
Next Steps
After environment setup, see juicebox-observability for monitoring.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
