jeremylongshore

juicebox-migration-deep-dive

@jeremylongshore/juicebox-migration-deep-dive
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Advanced Juicebox data migration strategies. Use when migrating from other recruiting platforms, performing bulk data imports, or implementing complex data transformation pipelines. Trigger with phrases like "juicebox data migration", "migrate to juicebox", "juicebox import", "juicebox bulk migration".

Installation

$skills install @jeremylongshore/juicebox-migration-deep-dive
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/juicebox-pack/skills/juicebox-migration-deep-dive/SKILL.md
Branchmain
Scoped Name@jeremylongshore/juicebox-migration-deep-dive

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: juicebox-migration-deep-dive description: | Advanced Juicebox data migration strategies. Use when migrating from other recruiting platforms, performing bulk data imports, or implementing complex data transformation pipelines. Trigger with phrases like "juicebox data migration", "migrate to juicebox", "juicebox import", "juicebox bulk migration". allowed-tools: Read, Write, Edit, Bash(kubectl:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Juicebox Migration Deep Dive

Overview

Advanced strategies for migrating data to Juicebox from other recruiting and people search platforms.

Prerequisites

  • Source data access and export capabilities
  • Juicebox Enterprise plan (for bulk imports)
  • Data mapping documentation
  • Testing environment

Migration Sources

SourceComplexityCommon Issues
LinkedIn RecruiterMediumRate limits, field mapping
GreenhouseLowWell-documented API
LeverLowStandard export format
Custom ATSHighCustom transformation needed
CSV/ExcelLowData quality issues

Instructions

Step 1: Data Assessment

// scripts/assess-source-data.ts
interface DataAssessment {
  totalRecords: number;
  uniqueProfiles: number;
  duplicates: number;
  fieldCoverage: Record<string, number>;
  dataQualityScore: number;
  estimatedMigrationTime: string;
}

export async function assessSourceData(
  source: string,
  sampleSize: number = 1000
): Promise<DataAssessment> {
  const sample = await loadSampleData(source, sampleSize);

  const assessment: DataAssessment = {
    totalRecords: sample.total,
    uniqueProfiles: new Set(sample.records.map(r => r.email)).size,
    duplicates: sample.total - new Set(sample.records.map(r => r.email)).size,
    fieldCoverage: calculateFieldCoverage(sample.records),
    dataQualityScore: calculateQualityScore(sample.records),
    estimatedMigrationTime: estimateMigrationTime(sample.total)
  };

  return assessment;
}

function calculateFieldCoverage(records: any[]): Record<string, number> {
  const fields = ['name', 'email', 'title', 'company', 'location', 'phone'];
  const coverage: Record<string, number> = {};

  for (const field of fields) {
    const count = records.filter(r => r[field] && r[field].trim()).length;
    coverage[field] = (count / records.length) * 100;
  }

  return coverage;
}

Step 2: Schema Mapping

// lib/migration/schema-mapper.ts
export interface FieldMapping {
  sourceField: string;
  targetField: string;
  transform?: (value: any) => any;
  required: boolean;
}

export const linkedInMapping: FieldMapping[] = [
  { sourceField: 'firstName', targetField: 'first_name', required: true },
  { sourceField: 'lastName', targetField: 'last_name', required: true },
  {
    sourceField: 'fullName',
    targetField: 'name',
    transform: (v) => v || undefined,
    required: false
  },
  { sourceField: 'headline', targetField: 'title', required: false },
  { sourceField: 'companyName', targetField: 'company', required: false },
  {
    sourceField: 'location',
    targetField: 'location',
    transform: normalizeLocation,
    required: false
  },
  {
    sourceField: 'profileUrl',
    targetField: 'linkedin_url',
    transform: normalizeLinkedInUrl,
    required: false
  },
  {
    sourceField: 'connectionDegree',
    targetField: 'metadata.connection_degree',
    required: false
  }
];

export class SchemaMapper {
  constructor(private mappings: FieldMapping[]) {}

  mapRecord(source: Record<string, any>): Record<string, any> {
    const target: Record<string, any> = {};

    for (const mapping of this.mappings) {
      let value = this.getNestedValue(source, mapping.sourceField);

      if (mapping.transform) {
        value = mapping.transform(value);
      }

      if (value !== undefined && value !== null && value !== '') {
        this.setNestedValue(target, mapping.targetField, value);
      } else if (mapping.required) {
        throw new Error(`Required field missing: ${mapping.sourceField}`);
      }
    }

    return target;
  }
}

Step 3: Data Transformation Pipeline

// lib/migration/pipeline.ts
import { Transform, pipeline } from 'stream';
import { promisify } from 'util';

const pipelineAsync = promisify(pipeline);

export class MigrationPipeline {
  private stages: Transform[] = [];

  addStage(name: string, transform: (record: any) => any): this {
    this.stages.push(new Transform({
      objectMode: true,
      transform(record, encoding, callback) {
        try {
          const result = transform(record);
          if (result) {
            this.push(result);
          }
          callback();
        } catch (error) {
          callback(error as Error);
        }
      }
    }));
    return this;
  }

  async run(source: Readable, destination: Writable): Promise<MigrationStats> {
    const stats = new MigrationStats();

    const statsTracker = new Transform({
      objectMode: true,
      transform(record, encoding, callback) {
        stats.increment();
        this.push(record);
        callback();
      }
    });

    await pipelineAsync(
      source,
      ...this.stages,
      statsTracker,
      destination
    );

    return stats;
  }
}

// Usage
const pipeline = new MigrationPipeline()
  .addStage('parse', parseCSVRecord)
  .addStage('validate', validateRecord)
  .addStage('deduplicate', deduplicateRecord)
  .addStage('transform', transformToJuiceboxSchema)
  .addStage('enrich', enrichWithMetadata);

Step 4: Bulk Import with Rate Limiting

// lib/migration/bulk-importer.ts
export class BulkImporter {
  private rateLimiter: RateLimiter;
  private batchSize: number;
  private maxConcurrent: number;

  constructor(options: {
    requestsPerSecond: number;
    batchSize: number;
    maxConcurrent: number;
  }) {
    this.rateLimiter = new RateLimiter(options.requestsPerSecond);
    this.batchSize = options.batchSize;
    this.maxConcurrent = options.maxConcurrent;
  }

  async import(records: Profile[]): Promise<ImportResult> {
    const result: ImportResult = {
      total: records.length,
      successful: 0,
      failed: 0,
      errors: []
    };

    // Split into batches
    const batches = chunk(records, this.batchSize);

    // Process batches with concurrency limit
    const semaphore = new Semaphore(this.maxConcurrent);

    await Promise.all(batches.map(async (batch, index) => {
      await semaphore.acquire();
      try {
        await this.rateLimiter.wait();
        const batchResult = await this.importBatch(batch);

        result.successful += batchResult.successful;
        result.failed += batchResult.failed;
        result.errors.push(...batchResult.errors);

        logger.info(`Batch ${index + 1}/${batches.length} complete`, {
          successful: batchResult.successful,
          failed: batchResult.failed
        });
      } finally {
        semaphore.release();
      }
    }));

    return result;
  }

  private async importBatch(batch: Profile[]): Promise<BatchResult> {
    try {
      const response = await juiceboxClient.profiles.bulkImport(batch);
      return {
        successful: response.created + response.updated,
        failed: response.failed,
        errors: response.errors
      };
    } catch (error) {
      return {
        successful: 0,
        failed: batch.length,
        errors: [{ message: (error as Error).message, records: batch }]
      };
    }
  }
}

Step 5: Validation and Reconciliation

// lib/migration/validator.ts
export class MigrationValidator {
  async validateMigration(
    sourceCount: number,
    destinationQuery: string
  ): Promise<ValidationReport> {
    const report: ValidationReport = {
      sourceCount,
      destinationCount: 0,
      matchRate: 0,
      missingRecords: [],
      dataIntegrityIssues: []
    };

    // Count destination records
    const destResult = await juiceboxClient.search.people({
      query: destinationQuery,
      limit: 0
    });
    report.destinationCount = destResult.total;
    report.matchRate = (report.destinationCount / sourceCount) * 100;

    // Sample validation
    const sampleSize = Math.min(100, sourceCount);
    const sample = await this.getSampleFromSource(sampleSize);

    for (const record of sample) {
      const match = await this.findInDestination(record);
      if (!match) {
        report.missingRecords.push(record.id);
      } else {
        const issues = this.compareRecords(record, match);
        if (issues.length > 0) {
          report.dataIntegrityIssues.push({
            recordId: record.id,
            issues
          });
        }
      }
    }

    return report;
  }

  private compareRecords(source: any, dest: any): string[] {
    const issues: string[] = [];
    const criticalFields = ['name', 'email', 'company'];

    for (const field of criticalFields) {
      if (source[field] !== dest[field]) {
        issues.push(`${field} mismatch: "${source[field]}" vs "${dest[field]}"`);
      }
    }

    return issues;
  }
}

Step 6: Rollback Strategy

// lib/migration/rollback.ts
export class MigrationRollback {
  private checkpointFile: string;

  constructor(migrationId: string) {
    this.checkpointFile = `./checkpoints/${migrationId}.json`;
  }

  async saveCheckpoint(state: MigrationState): Promise<void> {
    await fs.writeFile(this.checkpointFile, JSON.stringify(state, null, 2));
  }

  async loadCheckpoint(): Promise<MigrationState | null> {
    try {
      const data = await fs.readFile(this.checkpointFile, 'utf-8');
      return JSON.parse(data);
    } catch {
      return null;
    }
  }

  async rollback(migrationId: string): Promise<RollbackResult> {
    const checkpoint = await this.loadCheckpoint();
    if (!checkpoint) {
      throw new Error('No checkpoint found for rollback');
    }

    // Delete imported records
    const deleted = await juiceboxClient.profiles.bulkDelete({
      filter: { migrationId }
    });

    return {
      recordsRolledBack: deleted.count,
      checkpoint: checkpoint.lastProcessedId
    };
  }
}

Migration Checklist

## Pre-Migration
- [ ] Source data exported and validated
- [ ] Field mapping documented
- [ ] Test migration on sample data
- [ ] Rollback plan documented
- [ ] Stakeholder sign-off

## During Migration
- [ ] Monitoring dashboards active
- [ ] Progress tracking enabled
- [ ] Error logging configured
- [ ] Checkpoint saves working

## Post-Migration
- [ ] Reconciliation complete
- [ ] Data integrity verified
- [ ] Source system archived
- [ ] Documentation updated
- [ ] Team training complete

Output

  • Data assessment tools
  • Schema mapping configuration
  • Transformation pipeline
  • Bulk import with rate limiting
  • Validation and reconciliation

Resources

Summary

This skill pack completes the enterprise-grade Juicebox integration toolkit.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.