jeremylongshore

juicebox-deploy-integration

@jeremylongshore/juicebox-deploy-integration
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Deploy Juicebox integrations to production. Use when deploying to cloud platforms, configuring production environments, or setting up infrastructure for Juicebox. Trigger with phrases like "deploy juicebox", "juicebox production deploy", "juicebox infrastructure", "juicebox cloud setup".

Installation

$skills install @jeremylongshore/juicebox-deploy-integration
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/juicebox-pack/skills/juicebox-deploy-integration/SKILL.md
Branchmain
Scoped Name@jeremylongshore/juicebox-deploy-integration

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: juicebox-deploy-integration description: | Deploy Juicebox integrations to production. Use when deploying to cloud platforms, configuring production environments, or setting up infrastructure for Juicebox. Trigger with phrases like "deploy juicebox", "juicebox production deploy", "juicebox infrastructure", "juicebox cloud setup". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Juicebox Deploy Integration

Overview

Deploy Juicebox integrations to production cloud environments.

Prerequisites

  • CI pipeline configured
  • Cloud provider account (AWS, GCP, or Azure)
  • Production API key secured

Instructions

Step 1: Configure Secret Management

AWS Secrets Manager

# Store API key
aws secretsmanager create-secret \
  --name juicebox/api-key \
  --secret-string '{"apiKey":"jb_prod_xxxx"}'
// lib/secrets.ts
import { SecretsManager } from '@aws-sdk/client-secrets-manager';

export async function getJuiceboxApiKey(): Promise<string> {
  const client = new SecretsManager({ region: process.env.AWS_REGION });
  const result = await client.getSecretValue({
    SecretId: 'juicebox/api-key'
  });
  return JSON.parse(result.SecretString!).apiKey;
}

Google Secret Manager

# Store API key
echo -n "jb_prod_xxxx" | gcloud secrets create juicebox-api-key --data-file=-
// lib/secrets.ts
import { SecretManagerServiceClient } from '@google-cloud/secret-manager';

export async function getJuiceboxApiKey(): Promise<string> {
  const client = new SecretManagerServiceClient();
  const [version] = await client.accessSecretVersion({
    name: `projects/${process.env.GOOGLE_CLOUD_PROJECT}/secrets/juicebox-api-key/versions/latest`
  });
  return version.payload!.data!.toString();
}

Step 2: Create Deployment Configuration

Docker Deployment

# Dockerfile
FROM node:20-alpine

WORKDIR /app
COPY package*.json ./
RUN npm ci --only=production
COPY dist/ ./dist/

# Don't include secrets in image
ENV JUICEBOX_API_KEY=""

CMD ["node", "dist/index.js"]
# docker-compose.yml
version: '3.8'
services:
  app:
    build: .
    environment:
      - JUICEBOX_API_KEY=${JUICEBOX_API_KEY}
    secrets:
      - juicebox_api_key

secrets:
  juicebox_api_key:
    external: true

Kubernetes Deployment

# k8s/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: juicebox-app
spec:
  replicas: 3
  selector:
    matchLabels:
      app: juicebox-app
  template:
    metadata:
      labels:
        app: juicebox-app
    spec:
      containers:
        - name: app
          image: your-registry/juicebox-app:latest
          env:
            - name: JUICEBOX_API_KEY
              valueFrom:
                secretKeyRef:
                  name: juicebox-secrets
                  key: api-key
          resources:
            limits:
              memory: "256Mi"
              cpu: "500m"

Step 3: Configure Health Checks

// routes/health.ts
import { Router } from 'express';
import { JuiceboxClient } from '@juicebox/sdk';

const router = Router();

router.get('/health', (req, res) => {
  res.json({ status: 'ok' });
});

router.get('/health/ready', async (req, res) => {
  try {
    const client = new JuiceboxClient({
      apiKey: process.env.JUICEBOX_API_KEY!
    });
    await client.auth.me();
    res.json({ status: 'ready', juicebox: 'connected' });
  } catch (error) {
    res.status(503).json({ status: 'not ready', error: error.message });
  }
});

export default router;

Step 4: Deployment Script

#!/bin/bash
# scripts/deploy.sh

set -e

ENVIRONMENT=${1:-staging}
VERSION=$(git rev-parse --short HEAD)

echo "Deploying version $VERSION to $ENVIRONMENT"

# Build
npm run build
docker build -t juicebox-app:$VERSION .

# Push to registry
docker tag juicebox-app:$VERSION your-registry/juicebox-app:$VERSION
docker push your-registry/juicebox-app:$VERSION

# Deploy
if [ "$ENVIRONMENT" == "production" ]; then
  kubectl set image deployment/juicebox-app \
    app=your-registry/juicebox-app:$VERSION \
    --namespace production
else
  kubectl set image deployment/juicebox-app \
    app=your-registry/juicebox-app:$VERSION \
    --namespace staging
fi

# Wait for rollout
kubectl rollout status deployment/juicebox-app --namespace $ENVIRONMENT

echo "Deployment complete"

Output

  • Secret management configuration
  • Docker/Kubernetes manifests
  • Health check endpoints
  • Deployment scripts

Error Handling

IssueCauseSolution
Secret not foundIAM permissionsGrant access to secret
Health check failsAPI connectivityCheck network policies
Rollout stuckResource limitsAdjust resource requests

Resources

Next Steps

After deployment, see juicebox-webhooks-events for event handling.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.