jeremylongshore

juicebox-core-workflow-b

@jeremylongshore/juicebox-core-workflow-b
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Implement Juicebox candidate enrichment workflow. Use when enriching profile data, gathering additional candidate details, or building comprehensive candidate profiles. Trigger with phrases like "juicebox enrich profile", "juicebox candidate details", "enrich candidate data", "juicebox profile enrichment".

Installation

$skills install @jeremylongshore/juicebox-core-workflow-b
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/juicebox-pack/skills/juicebox-core-workflow-b/SKILL.md
Branchmain
Scoped Name@jeremylongshore/juicebox-core-workflow-b

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: juicebox-core-workflow-b description: | Implement Juicebox candidate enrichment workflow. Use when enriching profile data, gathering additional candidate details, or building comprehensive candidate profiles. Trigger with phrases like "juicebox enrich profile", "juicebox candidate details", "enrich candidate data", "juicebox profile enrichment". allowed-tools: Read, Write, Edit, Bash(npm:), Bash(pip:), Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Juicebox Candidate Enrichment Workflow

Overview

Enrich candidate profiles with additional data including contact information, work history, and skills verification.

Prerequisites

  • Juicebox SDK configured
  • Search workflow implemented (juicebox-core-workflow-a)
  • Data storage for enriched profiles

Instructions

Step 1: Define Enrichment Schema

// types/enrichment.ts
export interface EnrichedProfile {
  id: string;
  basicInfo: {
    name: string;
    title: string;
    company: string;
    location: string;
  };
  contact: {
    email?: string;
    phone?: string;
    linkedin?: string;
  };
  experience: WorkExperience[];
  education: Education[];
  skills: Skill[];
  lastEnriched: Date;
}

export interface WorkExperience {
  company: string;
  title: string;
  startDate: string;
  endDate?: string;
  description?: string;
}

Step 2: Implement Enrichment Service

// services/enrichment.ts
import { JuiceboxService } from '../lib/juicebox-client';

export class ProfileEnrichmentService {
  constructor(private juicebox: JuiceboxService) {}

  async enrichProfile(profileId: string): Promise<EnrichedProfile> {
    // Fetch full profile details
    const fullProfile = await this.juicebox.getProfile(profileId, {
      include: ['contact', 'experience', 'education', 'skills']
    });

    // Validate and structure data
    const enriched: EnrichedProfile = {
      id: profileId,
      basicInfo: {
        name: fullProfile.name,
        title: fullProfile.title,
        company: fullProfile.company,
        location: fullProfile.location
      },
      contact: {
        email: fullProfile.email,
        phone: fullProfile.phone,
        linkedin: fullProfile.linkedinUrl
      },
      experience: this.parseExperience(fullProfile.workHistory),
      education: this.parseEducation(fullProfile.education),
      skills: this.parseSkills(fullProfile.skills),
      lastEnriched: new Date()
    };

    return enriched;
  }

  async batchEnrich(profileIds: string[]): Promise<EnrichedProfile[]> {
    const batchSize = 10;
    const results: EnrichedProfile[] = [];

    for (let i = 0; i < profileIds.length; i += batchSize) {
      const batch = profileIds.slice(i, i + batchSize);
      const enriched = await Promise.all(
        batch.map(id => this.enrichProfile(id))
      );
      results.push(...enriched);

      // Rate limit protection
      if (i + batchSize < profileIds.length) {
        await sleep(1000);
      }
    }

    return results;
  }
}

Step 3: Store Enriched Data

// storage/profiles.ts
export class ProfileStorage {
  async saveEnrichedProfile(profile: EnrichedProfile): Promise<void> {
    await db.profiles.upsert({
      where: { id: profile.id },
      create: profile,
      update: {
        ...profile,
        lastEnriched: new Date()
      }
    });
  }

  async getStaleProfiles(olderThan: Date): Promise<string[]> {
    const stale = await db.profiles.findMany({
      where: {
        lastEnriched: { lt: olderThan }
      },
      select: { id: true }
    });
    return stale.map(p => p.id);
  }
}

Output

  • Enriched profile schema
  • Batch enrichment service
  • Data persistence layer
  • Freshness tracking

Error Handling

ErrorCauseSolution
Profile Not FoundInvalid IDVerify profile exists
Partial DataLimited accessHandle optional fields
Rate LimitedToo many requestsImplement backoff

Examples

Enrichment Pipeline

const enrichmentService = new ProfileEnrichmentService(juicebox);
const storage = new ProfileStorage();

// Enrich search results
const candidates = await searchPipeline.searchCandidates(criteria);
const profileIds = candidates.slice(0, 20).map(c => c.id);

const enriched = await enrichmentService.batchEnrich(profileIds);

for (const profile of enriched) {
  await storage.saveEnrichedProfile(profile);
  console.log(`Enriched: ${profile.basicInfo.name}`);
}

Resources

Next Steps

After enrichment, explore juicebox-common-errors for error handling patterns.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.