jeremylongshore

gamma-rate-limits

@jeremylongshore/gamma-rate-limits
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Understand and manage Gamma API rate limits effectively. Use when hitting rate limits, optimizing API usage, or implementing request queuing systems. Trigger with phrases like "gamma rate limit", "gamma quota", "gamma 429", "gamma throttle", "gamma request limits".

Installation

$skills install @jeremylongshore/gamma-rate-limits
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/gamma-pack/skills/gamma-rate-limits/SKILL.md
Branchmain
Scoped Name@jeremylongshore/gamma-rate-limits

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: gamma-rate-limits description: | Understand and manage Gamma API rate limits effectively. Use when hitting rate limits, optimizing API usage, or implementing request queuing systems. Trigger with phrases like "gamma rate limit", "gamma quota", "gamma 429", "gamma throttle", "gamma request limits". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Gamma Rate Limits

Overview

Understand Gamma API rate limits and implement effective strategies for high-volume usage.

Prerequisites

  • Active Gamma API integration
  • Understanding of HTTP headers
  • Basic queuing concepts

Rate Limit Tiers

PlanRequests/minPresentations/dayExports/hour
Free10510
Pro6050100
Team200200500
EnterpriseCustomCustomCustom

Instructions

Step 1: Check Rate Limit Headers

const response = await gamma.presentations.list();

// Rate limit headers
const headers = response.headers;
console.log('Limit:', headers['x-ratelimit-limit']);
console.log('Remaining:', headers['x-ratelimit-remaining']);
console.log('Reset:', new Date(headers['x-ratelimit-reset'] * 1000));

Step 2: Implement Exponential Backoff

async function withBackoff<T>(
  fn: () => Promise<T>,
  options = { maxRetries: 5, baseDelay: 1000 }
): Promise<T> {
  for (let attempt = 0; attempt < options.maxRetries; attempt++) {
    try {
      return await fn();
    } catch (err) {
      if (err.status !== 429 || attempt === options.maxRetries - 1) {
        throw err;
      }

      const delay = err.retryAfter
        ? err.retryAfter * 1000
        : options.baseDelay * Math.pow(2, attempt);

      console.log(`Rate limited. Retrying in ${delay}ms...`);
      await new Promise(r => setTimeout(r, delay));
    }
  }
  throw new Error('Max retries exceeded');
}

// Usage
const result = await withBackoff(() =>
  gamma.presentations.create({ title: 'My Deck', prompt: 'AI overview' })
);

Step 3: Request Queue

class RateLimitedQueue {
  private queue: Array<() => Promise<any>> = [];
  private processing = false;
  private requestsPerMinute: number;
  private interval: number;

  constructor(requestsPerMinute = 60) {
    this.requestsPerMinute = requestsPerMinute;
    this.interval = 60000 / requestsPerMinute;
  }

  async add<T>(fn: () => Promise<T>): Promise<T> {
    return new Promise((resolve, reject) => {
      this.queue.push(async () => {
        try {
          resolve(await fn());
        } catch (err) {
          reject(err);
        }
      });
      this.process();
    });
  }

  private async process() {
    if (this.processing) return;
    this.processing = true;

    while (this.queue.length > 0) {
      const fn = this.queue.shift()!;
      await fn();
      await new Promise(r => setTimeout(r, this.interval));
    }

    this.processing = false;
  }
}

// Usage
const queue = new RateLimitedQueue(30); // 30 req/min

const results = await Promise.all([
  queue.add(() => gamma.presentations.create({ ... })),
  queue.add(() => gamma.presentations.create({ ... })),
  queue.add(() => gamma.presentations.create({ ... })),
]);

Step 4: Monitor Usage

async function getRateLimitStatus() {
  const status = await gamma.rateLimit.status();

  return {
    limit: status.limit,
    remaining: status.remaining,
    percentUsed: ((status.limit - status.remaining) / status.limit * 100).toFixed(1),
    resetAt: new Date(status.reset * 1000),
    resetIn: Math.ceil((status.reset * 1000 - Date.now()) / 1000),
  };
}

// Usage
const status = await getRateLimitStatus();
console.log(`Used ${status.percentUsed}% of rate limit`);
console.log(`Resets in ${status.resetIn} seconds`);

Output

  • Rate limit aware API calls
  • Automatic retry with backoff
  • Request queuing system
  • Usage monitoring dashboard

Error Handling

ScenarioStrategyImplementation
Occasional 429Exponential backoffwithBackoff() wrapper
Consistent 429Request queueRateLimitedQueue class
Near limitPreemptive throttleCheck remaining before call
Burst trafficToken bucketImplement token bucket algorithm

Resources

Next Steps

Proceed to gamma-security-basics for security best practices.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.