Understand and manage Gamma API rate limits effectively. Use when hitting rate limits, optimizing API usage, or implementing request queuing systems. Trigger with phrases like "gamma rate limit", "gamma quota", "gamma 429", "gamma throttle", "gamma request limits".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: gamma-rate-limits description: | Understand and manage Gamma API rate limits effectively. Use when hitting rate limits, optimizing API usage, or implementing request queuing systems. Trigger with phrases like "gamma rate limit", "gamma quota", "gamma 429", "gamma throttle", "gamma request limits". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Gamma Rate Limits
Overview
Understand Gamma API rate limits and implement effective strategies for high-volume usage.
Prerequisites
- Active Gamma API integration
- Understanding of HTTP headers
- Basic queuing concepts
Rate Limit Tiers
| Plan | Requests/min | Presentations/day | Exports/hour |
|---|---|---|---|
| Free | 10 | 5 | 10 |
| Pro | 60 | 50 | 100 |
| Team | 200 | 200 | 500 |
| Enterprise | Custom | Custom | Custom |
Instructions
Step 1: Check Rate Limit Headers
const response = await gamma.presentations.list();
// Rate limit headers
const headers = response.headers;
console.log('Limit:', headers['x-ratelimit-limit']);
console.log('Remaining:', headers['x-ratelimit-remaining']);
console.log('Reset:', new Date(headers['x-ratelimit-reset'] * 1000));
Step 2: Implement Exponential Backoff
async function withBackoff<T>(
fn: () => Promise<T>,
options = { maxRetries: 5, baseDelay: 1000 }
): Promise<T> {
for (let attempt = 0; attempt < options.maxRetries; attempt++) {
try {
return await fn();
} catch (err) {
if (err.status !== 429 || attempt === options.maxRetries - 1) {
throw err;
}
const delay = err.retryAfter
? err.retryAfter * 1000
: options.baseDelay * Math.pow(2, attempt);
console.log(`Rate limited. Retrying in ${delay}ms...`);
await new Promise(r => setTimeout(r, delay));
}
}
throw new Error('Max retries exceeded');
}
// Usage
const result = await withBackoff(() =>
gamma.presentations.create({ title: 'My Deck', prompt: 'AI overview' })
);
Step 3: Request Queue
class RateLimitedQueue {
private queue: Array<() => Promise<any>> = [];
private processing = false;
private requestsPerMinute: number;
private interval: number;
constructor(requestsPerMinute = 60) {
this.requestsPerMinute = requestsPerMinute;
this.interval = 60000 / requestsPerMinute;
}
async add<T>(fn: () => Promise<T>): Promise<T> {
return new Promise((resolve, reject) => {
this.queue.push(async () => {
try {
resolve(await fn());
} catch (err) {
reject(err);
}
});
this.process();
});
}
private async process() {
if (this.processing) return;
this.processing = true;
while (this.queue.length > 0) {
const fn = this.queue.shift()!;
await fn();
await new Promise(r => setTimeout(r, this.interval));
}
this.processing = false;
}
}
// Usage
const queue = new RateLimitedQueue(30); // 30 req/min
const results = await Promise.all([
queue.add(() => gamma.presentations.create({ ... })),
queue.add(() => gamma.presentations.create({ ... })),
queue.add(() => gamma.presentations.create({ ... })),
]);
Step 4: Monitor Usage
async function getRateLimitStatus() {
const status = await gamma.rateLimit.status();
return {
limit: status.limit,
remaining: status.remaining,
percentUsed: ((status.limit - status.remaining) / status.limit * 100).toFixed(1),
resetAt: new Date(status.reset * 1000),
resetIn: Math.ceil((status.reset * 1000 - Date.now()) / 1000),
};
}
// Usage
const status = await getRateLimitStatus();
console.log(`Used ${status.percentUsed}% of rate limit`);
console.log(`Resets in ${status.resetIn} seconds`);
Output
- Rate limit aware API calls
- Automatic retry with backoff
- Request queuing system
- Usage monitoring dashboard
Error Handling
| Scenario | Strategy | Implementation |
|---|---|---|
| Occasional 429 | Exponential backoff | withBackoff() wrapper |
| Consistent 429 | Request queue | RateLimitedQueue class |
| Near limit | Preemptive throttle | Check remaining before call |
| Burst traffic | Token bucket | Implement token bucket algorithm |
Resources
Next Steps
Proceed to gamma-security-basics for security best practices.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
