Configure Gamma across development, staging, and production environments. Use when setting up multi-environment deployments, configuring per-environment secrets, or implementing environment-specific Gamma configurations. Trigger with phrases like "gamma environments", "gamma staging", "gamma dev prod", "gamma environment setup", "gamma config by env".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: gamma-multi-env-setup description: | Configure Gamma across development, staging, and production environments. Use when setting up multi-environment deployments, configuring per-environment secrets, or implementing environment-specific Gamma configurations. Trigger with phrases like "gamma environments", "gamma staging", "gamma dev prod", "gamma environment setup", "gamma config by env". allowed-tools: Read, Write, Edit, Bash(aws:), Bash(gcloud:), Bash(vault:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Gamma Multi-Environment Setup
Overview
Configure Gamma across development, staging, and production environments with proper isolation and secrets management.
Prerequisites
- Separate Gamma API keys per environment
- Secret management solution (Vault, AWS Secrets Manager, etc.)
- CI/CD pipeline with environment variables
- Environment detection in application
Instructions
Step 1: Environment Configuration Structure
// config/gamma.config.ts
interface GammaConfig {
apiKey: string;
baseUrl: string;
timeout: number;
retries: number;
debug: boolean;
}
type Environment = 'development' | 'staging' | 'production';
const configs: Record<Environment, Partial<GammaConfig>> = {
development: {
baseUrl: 'https://api.gamma.app/v1',
timeout: 60000,
retries: 1,
debug: true,
},
staging: {
baseUrl: 'https://api.gamma.app/v1',
timeout: 45000,
retries: 2,
debug: true,
},
production: {
baseUrl: 'https://api.gamma.app/v1',
timeout: 30000,
retries: 3,
debug: false,
},
};
export function getConfig(): GammaConfig {
const env = (process.env.NODE_ENV || 'development') as Environment;
const envConfig = configs[env];
return {
apiKey: process.env.GAMMA_API_KEY!,
...envConfig,
} as GammaConfig;
}
Step 2: Environment-Specific API Keys
# .env.development
GAMMA_API_KEY=gamma_dev_xxx...
GAMMA_MOCK=false
NODE_ENV=development
# .env.staging
GAMMA_API_KEY=gamma_staging_xxx...
GAMMA_MOCK=false
NODE_ENV=staging
# .env.production
GAMMA_API_KEY=gamma_prod_xxx...
GAMMA_MOCK=false
NODE_ENV=production
Step 3: Secret Management Integration
// lib/secrets.ts
import { SecretsManager } from '@aws-sdk/client-secrets-manager';
const secretsManager = new SecretsManager({ region: 'us-east-1' });
interface SecretCache {
value: string;
expiresAt: number;
}
const cache: Map<string, SecretCache> = new Map();
const CACHE_TTL = 300000; // 5 minutes
export async function getSecret(name: string): Promise<string> {
const cached = cache.get(name);
if (cached && cached.expiresAt > Date.now()) {
return cached.value;
}
const env = process.env.NODE_ENV || 'development';
const secretName = `gamma/${env}/${name}`;
const response = await secretsManager.getSecretValue({
SecretId: secretName,
});
const value = response.SecretString!;
cache.set(name, { value, expiresAt: Date.now() + CACHE_TTL });
return value;
}
// Usage
const apiKey = await getSecret('api-key');
Step 4: Client Factory
// lib/gamma-factory.ts
import { GammaClient } from '@gamma/sdk';
import { getConfig } from '../config/gamma.config';
import { getSecret } from './secrets';
let clients: Map<string, GammaClient> = new Map();
export async function getGammaClient(): Promise<GammaClient> {
const env = process.env.NODE_ENV || 'development';
if (clients.has(env)) {
return clients.get(env)!;
}
const config = getConfig();
// In production, fetch from secret manager
const apiKey = env === 'production'
? await getSecret('api-key')
: config.apiKey;
const client = new GammaClient({
apiKey,
baseUrl: config.baseUrl,
timeout: config.timeout,
retries: config.retries,
debug: config.debug,
});
clients.set(env, client);
return client;
}
Step 5: Environment Guards
// lib/env-guards.ts
export function requireProduction(): void {
if (process.env.NODE_ENV !== 'production') {
throw new Error('This operation requires production environment');
}
}
export function blockProduction(): void {
if (process.env.NODE_ENV === 'production') {
throw new Error('This operation is blocked in production');
}
}
// Usage
async function deleteAllPresentations() {
blockProduction(); // Safety guard
const gamma = await getGammaClient();
const presentations = await gamma.presentations.list();
for (const p of presentations) {
await gamma.presentations.delete(p.id);
}
}
async function runMigration() {
requireProduction(); // Ensure correct environment
// Migration logic
}
Step 6: CI/CD Environment Configuration
# .github/workflows/deploy.yml
name: Deploy
on:
push:
branches:
- develop # → staging
- main # → production
jobs:
deploy-staging:
if: github.ref == 'refs/heads/develop'
runs-on: ubuntu-latest
environment: staging
steps:
- uses: actions/checkout@v4
- name: Deploy to Staging
env:
GAMMA_API_KEY: ${{ secrets.GAMMA_API_KEY_STAGING }}
NODE_ENV: staging
run: |
npm ci
npm run build
npm run deploy:staging
deploy-production:
if: github.ref == 'refs/heads/main'
runs-on: ubuntu-latest
environment: production
steps:
- uses: actions/checkout@v4
- name: Deploy to Production
env:
GAMMA_API_KEY: ${{ secrets.GAMMA_API_KEY_PRODUCTION }}
NODE_ENV: production
run: |
npm ci
npm run build
npm run deploy:production
Environment Checklist
| Check | Dev | Staging | Prod |
|---|---|---|---|
| Separate API key | Yes | Yes | Yes |
| Debug logging | On | On | Off |
| Mock mode available | Yes | Yes | No |
| Secret manager | No | Yes | Yes |
| Rate limit tier | Low | Medium | High |
| Error reporting | Console | Sentry | Sentry |
Resources
Next Steps
Proceed to gamma-observability for monitoring setup.
More by jeremylongshore
View allOauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
