Comprehensive debugging toolkit for Gamma integration issues. Use when you need detailed diagnostics, request tracing, or systematic debugging of Gamma API problems. Trigger with phrases like "gamma debug bundle", "gamma diagnostics", "gamma trace", "gamma inspect", "gamma detailed logs".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: gamma-debug-bundle description: | Comprehensive debugging toolkit for Gamma integration issues. Use when you need detailed diagnostics, request tracing, or systematic debugging of Gamma API problems. Trigger with phrases like "gamma debug bundle", "gamma diagnostics", "gamma trace", "gamma inspect", "gamma detailed logs". allowed-tools: Read, Write, Edit, Bash(node:*), Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Gamma Debug Bundle
Overview
Comprehensive debugging toolkit for systematic troubleshooting of Gamma integration issues.
Prerequisites
- Active Gamma integration with issues
- Node.js 18+ for debug tools
- Access to application logs
Instructions
Step 1: Create Debug Client
// debug/gamma-debug.ts
import { GammaClient } from '@gamma/sdk';
interface DebugLog {
timestamp: string;
method: string;
path: string;
requestBody?: object;
responseBody?: object;
duration: number;
status: number;
error?: string;
}
const logs: DebugLog[] = [];
export function createDebugClient() {
const gamma = new GammaClient({
apiKey: process.env.GAMMA_API_KEY,
interceptors: {
request: (config) => {
config._startTime = Date.now();
config._id = crypto.randomUUID();
console.log(`[${config._id}] -> ${config.method} ${config.path}`);
return config;
},
response: (response, config) => {
const duration = Date.now() - config._startTime;
console.log(`[${config._id}] <- ${response.status} (${duration}ms)`);
logs.push({
timestamp: new Date().toISOString(),
method: config.method,
path: config.path,
requestBody: config.body,
responseBody: response.data,
duration,
status: response.status,
});
return response;
},
error: (error, config) => {
const duration = Date.now() - config._startTime;
console.error(`[${config._id}] !! ${error.message} (${duration}ms)`);
logs.push({
timestamp: new Date().toISOString(),
method: config.method,
path: config.path,
requestBody: config.body,
duration,
status: error.status || 0,
error: error.message,
});
throw error;
},
},
});
return { gamma, getLogs: () => [...logs], clearLogs: () => logs.length = 0 };
}
Step 2: Diagnostic Script
// debug/diagnose.ts
import { createDebugClient } from './gamma-debug';
async function diagnose() {
const { gamma, getLogs } = createDebugClient();
console.log('=== Gamma Diagnostic Report ===\n');
// Test 1: Authentication
console.log('1. Testing Authentication...');
try {
await gamma.ping();
console.log(' OK - Authentication working\n');
} catch (err) {
console.log(` FAIL - ${err.message}\n`);
return;
}
// Test 2: API Access
console.log('2. Testing API Access...');
try {
const presentations = await gamma.presentations.list({ limit: 1 });
console.log(` OK - Can list presentations (${presentations.length} found)\n`);
} catch (err) {
console.log(` FAIL - ${err.message}\n`);
}
// Test 3: Generation Capability
console.log('3. Testing Generation...');
try {
const test = await gamma.presentations.create({
title: 'Debug Test',
prompt: 'Single test slide',
slideCount: 1,
dryRun: true,
});
console.log(' OK - Generation endpoint working\n');
} catch (err) {
console.log(` FAIL - ${err.message}\n`);
}
// Test 4: Rate Limits
console.log('4. Checking Rate Limits...');
const status = await gamma.rateLimit.status();
console.log(` Remaining: ${status.remaining}/${status.limit}`);
console.log(` Resets: ${new Date(status.reset * 1000).toISOString()}\n`);
// Summary
console.log('=== Request Log ===');
for (const log of getLogs()) {
console.log(`${log.method} ${log.path} - ${log.status} (${log.duration}ms)`);
}
}
diagnose().catch(console.error);
Step 3: Environment Checker
// debug/check-env.ts
function checkEnvironment() {
const checks = [
{ name: 'GAMMA_API_KEY', value: process.env.GAMMA_API_KEY },
{ name: 'NODE_ENV', value: process.env.NODE_ENV },
{ name: 'Node Version', value: process.version },
];
console.log('=== Environment Check ===\n');
for (const check of checks) {
const status = check.value ? 'SET' : 'MISSING';
const display = check.value
? check.value.substring(0, 8) + '...'
: 'NOT SET';
console.log(`${check.name}: ${status} (${display})`);
}
}
checkEnvironment();
Step 4: Export Debug Bundle
// debug/export-bundle.ts
async function exportDebugBundle() {
const bundle = {
timestamp: new Date().toISOString(),
environment: {
nodeVersion: process.version,
platform: process.platform,
env: process.env.NODE_ENV,
},
logs: getLogs(),
config: {
apiKeySet: !!process.env.GAMMA_API_KEY,
timeout: 30000,
},
};
await fs.writeFile(
'gamma-debug-bundle.json',
JSON.stringify(bundle, null, 2)
);
console.log('Debug bundle exported to gamma-debug-bundle.json');
}
Output
- Debug client with request tracing
- Diagnostic script output
- Environment check report
- Exportable debug bundle
Resources
Next Steps
Proceed to gamma-rate-limits for rate limit management.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
