Implement core Gamma workflow for AI presentation generation. Use when creating presentations from prompts, documents, or structured content with AI assistance. Trigger with phrases like "gamma generate presentation", "gamma AI slides", "gamma from prompt", "gamma content to slides", "gamma automation".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: gamma-core-workflow-a description: | Implement core Gamma workflow for AI presentation generation. Use when creating presentations from prompts, documents, or structured content with AI assistance. Trigger with phrases like "gamma generate presentation", "gamma AI slides", "gamma from prompt", "gamma content to slides", "gamma automation". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Gamma Core Workflow A: AI Presentation Generation
Overview
Implement the core workflow for generating presentations using Gamma's AI capabilities from various input sources.
Prerequisites
- Completed
gamma-sdk-patternssetup - Understanding of async patterns
- Content ready for presentation
Instructions
Step 1: Prompt-Based Generation
import { GammaClient } from '@gamma/sdk';
const gamma = new GammaClient({ apiKey: process.env.GAMMA_API_KEY });
async function generateFromPrompt(topic: string, slides: number = 10) {
const presentation = await gamma.presentations.generate({
prompt: topic,
slideCount: slides,
style: 'professional',
includeImages: true,
includeSpeakerNotes: true,
});
return presentation;
}
// Usage
const deck = await generateFromPrompt('Introduction to Machine Learning', 8);
console.log('Generated:', deck.url);
Step 2: Document-Based Generation
async function generateFromDocument(filePath: string) {
const document = await fs.readFile(filePath, 'utf-8');
const presentation = await gamma.presentations.generate({
sourceDocument: document,
sourceType: 'markdown', // or 'pdf', 'docx', 'text'
extractKeyPoints: true,
maxSlides: 15,
});
return presentation;
}
Step 3: Structured Content Generation
interface SlideOutline {
title: string;
points: string[];
imagePrompt?: string;
}
async function generateFromOutline(outline: SlideOutline[]) {
const presentation = await gamma.presentations.generate({
slides: outline.map(slide => ({
title: slide.title,
content: slide.points.join('\n'),
generateImage: slide.imagePrompt,
})),
style: 'modern',
});
return presentation;
}
Step 4: Batch Generation Pipeline
async function batchGenerate(topics: string[]) {
const results = await Promise.allSettled(
topics.map(topic =>
gamma.presentations.generate({
prompt: topic,
slideCount: 5,
})
)
);
return results.map((r, i) => ({
topic: topics[i],
status: r.status,
url: r.status === 'fulfilled' ? r.value.url : null,
error: r.status === 'rejected' ? r.reason.message : null,
}));
}
Output
- AI-generated presentations from prompts
- Document-to-presentation conversion
- Structured content transformation
- Batch processing capability
Error Handling
| Error | Cause | Solution |
|---|---|---|
| Generation Timeout | Complex prompt | Reduce slide count or simplify |
| Content Too Long | Document exceeds limit | Split into sections |
| Rate Limit | Too many requests | Implement queue system |
| Style Not Found | Invalid style name | Check available styles |
Resources
Next Steps
Proceed to gamma-core-workflow-b for presentation editing and export workflows.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
