jeremylongshore

fireflies-sdk-patterns

@jeremylongshore/fireflies-sdk-patterns
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Apply production-ready Fireflies.ai SDK patterns for TypeScript and Python. Use when implementing Fireflies.ai integrations, refactoring SDK usage, or establishing team coding standards for Fireflies.ai. Trigger with phrases like "fireflies SDK patterns", "fireflies best practices", "fireflies code patterns", "idiomatic fireflies".

Installation

$skills install @jeremylongshore/fireflies-sdk-patterns
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/fireflies-pack/skills/fireflies-sdk-patterns/SKILL.md
Branchmain
Scoped Name@jeremylongshore/fireflies-sdk-patterns

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: fireflies-sdk-patterns description: | Apply production-ready Fireflies.ai SDK patterns for TypeScript and Python. Use when implementing Fireflies.ai integrations, refactoring SDK usage, or establishing team coding standards for Fireflies.ai. Trigger with phrases like "fireflies SDK patterns", "fireflies best practices", "fireflies code patterns", "idiomatic fireflies". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Fireflies.ai SDK Patterns

Overview

Production-ready patterns for Fireflies.ai SDK usage in TypeScript and Python.

Prerequisites

  • Completed fireflies-install-auth setup
  • Familiarity with async/await patterns
  • Understanding of error handling best practices

Instructions

Step 1: Implement Singleton Pattern (Recommended)

// src/fireflies/client.ts
import { Fireflies.aiClient } from '@fireflies/sdk';

let instance: Fireflies.aiClient | null = null;

export function getFireflies.aiClient(): Fireflies.aiClient {
  if (!instance) {
    instance = new Fireflies.aiClient({
      apiKey: process.env.FIREFLIES_API_KEY!,
      // Additional options
    });
  }
  return instance;
}

Step 2: Add Error Handling Wrapper

import { Fireflies.aiError } from '@fireflies/sdk';

async function safeFireflies.aiCall<T>(
  operation: () => Promise<T>
): Promise<{ data: T | null; error: Error | null }> {
  try {
    const data = await operation();
    return { data, error: null };
  } catch (err) {
    if (err instanceof Fireflies.aiError) {
      console.error({
        code: err.code,
        message: err.message,
      });
    }
    return { data: null, error: err as Error };
  }
}

Step 3: Implement Retry Logic

async function withRetry<T>(
  operation: () => Promise<T>,
  maxRetries = 3,
  backoffMs = 1000
): Promise<T> {
  for (let attempt = 1; attempt <= maxRetries; attempt++) {
    try {
      return await operation();
    } catch (err) {
      if (attempt === maxRetries) throw err;
      const delay = backoffMs * Math.pow(2, attempt - 1);
      await new Promise(r => setTimeout(r, delay));
    }
  }
  throw new Error('Unreachable');
}

Output

  • Type-safe client singleton
  • Robust error handling with structured logging
  • Automatic retry with exponential backoff
  • Runtime validation for API responses

Error Handling

PatternUse CaseBenefit
Safe wrapperAll API callsPrevents uncaught exceptions
Retry logicTransient failuresImproves reliability
Type guardsResponse validationCatches API changes
LoggingAll operationsDebugging and monitoring

Examples

Factory Pattern (Multi-tenant)

const clients = new Map<string, Fireflies.aiClient>();

export function getClientForTenant(tenantId: string): Fireflies.aiClient {
  if (!clients.has(tenantId)) {
    const apiKey = getTenantApiKey(tenantId);
    clients.set(tenantId, new Fireflies.aiClient({ apiKey }));
  }
  return clients.get(tenantId)!;
}

Python Context Manager

from contextlib import asynccontextmanager
from fireflies import Fireflies.aiClient

@asynccontextmanager
async def get_fireflies_client():
    client = Fireflies.aiClient()
    try:
        yield client
    finally:
        await client.close()

Zod Validation

import { z } from 'zod';

const firefliesResponseSchema = z.object({
  id: z.string(),
  status: z.enum(['active', 'inactive']),
  createdAt: z.string().datetime(),
});

Resources

Next Steps

Apply patterns in fireflies-core-workflow-a for real-world usage.

More by jeremylongshore

View all
oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.

rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").