Apply production-ready Fireflies.ai SDK patterns for TypeScript and Python. Use when implementing Fireflies.ai integrations, refactoring SDK usage, or establishing team coding standards for Fireflies.ai. Trigger with phrases like "fireflies SDK patterns", "fireflies best practices", "fireflies code patterns", "idiomatic fireflies".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: fireflies-sdk-patterns description: | Apply production-ready Fireflies.ai SDK patterns for TypeScript and Python. Use when implementing Fireflies.ai integrations, refactoring SDK usage, or establishing team coding standards for Fireflies.ai. Trigger with phrases like "fireflies SDK patterns", "fireflies best practices", "fireflies code patterns", "idiomatic fireflies". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Fireflies.ai SDK Patterns
Overview
Production-ready patterns for Fireflies.ai SDK usage in TypeScript and Python.
Prerequisites
- Completed
fireflies-install-authsetup - Familiarity with async/await patterns
- Understanding of error handling best practices
Instructions
Step 1: Implement Singleton Pattern (Recommended)
// src/fireflies/client.ts
import { Fireflies.aiClient } from '@fireflies/sdk';
let instance: Fireflies.aiClient | null = null;
export function getFireflies.aiClient(): Fireflies.aiClient {
if (!instance) {
instance = new Fireflies.aiClient({
apiKey: process.env.FIREFLIES_API_KEY!,
// Additional options
});
}
return instance;
}
Step 2: Add Error Handling Wrapper
import { Fireflies.aiError } from '@fireflies/sdk';
async function safeFireflies.aiCall<T>(
operation: () => Promise<T>
): Promise<{ data: T | null; error: Error | null }> {
try {
const data = await operation();
return { data, error: null };
} catch (err) {
if (err instanceof Fireflies.aiError) {
console.error({
code: err.code,
message: err.message,
});
}
return { data: null, error: err as Error };
}
}
Step 3: Implement Retry Logic
async function withRetry<T>(
operation: () => Promise<T>,
maxRetries = 3,
backoffMs = 1000
): Promise<T> {
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
return await operation();
} catch (err) {
if (attempt === maxRetries) throw err;
const delay = backoffMs * Math.pow(2, attempt - 1);
await new Promise(r => setTimeout(r, delay));
}
}
throw new Error('Unreachable');
}
Output
- Type-safe client singleton
- Robust error handling with structured logging
- Automatic retry with exponential backoff
- Runtime validation for API responses
Error Handling
| Pattern | Use Case | Benefit |
|---|---|---|
| Safe wrapper | All API calls | Prevents uncaught exceptions |
| Retry logic | Transient failures | Improves reliability |
| Type guards | Response validation | Catches API changes |
| Logging | All operations | Debugging and monitoring |
Examples
Factory Pattern (Multi-tenant)
const clients = new Map<string, Fireflies.aiClient>();
export function getClientForTenant(tenantId: string): Fireflies.aiClient {
if (!clients.has(tenantId)) {
const apiKey = getTenantApiKey(tenantId);
clients.set(tenantId, new Fireflies.aiClient({ apiKey }));
}
return clients.get(tenantId)!;
}
Python Context Manager
from contextlib import asynccontextmanager
from fireflies import Fireflies.aiClient
@asynccontextmanager
async def get_fireflies_client():
client = Fireflies.aiClient()
try:
yield client
finally:
await client.close()
Zod Validation
import { z } from 'zod';
const firefliesResponseSchema = z.object({
id: z.string(),
status: z.enum(['active', 'inactive']),
createdAt: z.string().datetime(),
});
Resources
Next Steps
Apply patterns in fireflies-core-workflow-a for real-world usage.
More by jeremylongshore
View allOauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
