jeremylongshore

firebase-vertex-ai

@jeremylongshore/firebase-vertex-ai
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Execute firebase platform expert with Vertex AI Gemini integration for Authentication, Firestore, Storage, Functions, Hosting, and AI-powered features. Use when asked to "setup firebase", "deploy to firebase", or "integrate vertex ai with firebase". Trigger with relevant phrases based on skill purpose.

Installation

$skills install @jeremylongshore/firebase-vertex-ai
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/community/jeremy-firebase/skills/firebase-vertex-ai/SKILL.md
Branchmain
Scoped Name@jeremylongshore/firebase-vertex-ai

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: firebase-vertex-ai description: | Execute firebase platform expert with Vertex AI Gemini integration for Authentication, Firestore, Storage, Functions, Hosting, and AI-powered features. Use when asked to "setup firebase", "deploy to firebase", or "integrate vertex ai with firebase". Trigger with relevant phrases based on skill purpose. allowed-tools: Read, Write, Edit, Grep, Glob, Bash(cmd:*) version: 1.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT

Firebase Vertex AI

Operate Firebase projects end-to-end (Auth, Firestore, Functions, Hosting) and integrate Gemini/Vertex AI safely for AI-powered features.

Overview

Use this skill to design, implement, and deploy Firebase applications that call Vertex AI/Gemini from Cloud Functions (or other GCP services) with secure secrets handling, least-privilege IAM, and production-ready observability.

Prerequisites

  • Node.js runtime and Firebase CLI access for the target project
  • A Firebase project (billing enabled for Functions/Vertex AI as needed)
  • Vertex AI API enabled and permissions to call Gemini/Vertex AI from your backend
  • Secrets managed via env vars or Secret Manager (never in client code)

Instructions

  1. Initialize Firebase (or validate an existing repo): Hosting/Functions/Firestore as required.
  2. Implement backend integration:
    • add a Cloud Function/HTTP endpoint that calls Gemini/Vertex AI
    • validate inputs and return structured responses
  3. Configure data and security:
    • Firestore rules + indexes
    • Storage rules (if applicable)
    • Auth providers and authorization checks
  4. Deploy and verify:
    • deploy Functions/Hosting
    • run smoke tests against deployed endpoints
  5. Add ops guardrails:
    • logging/metrics
    • alerting for error spikes
    • basic cost controls (budgets/quotas) where appropriate

Output

  • A deployable Firebase project structure (configs + Functions/Hosting as needed)
  • Secure backend code that calls Gemini/Vertex AI (with secrets handled correctly)
  • Firestore/Storage rules and index guidance
  • A verification checklist (local + deployed) and CI-ready commands

Error Handling

  • Auth failures: identify the principal and missing permission/role; fix with least privilege.
  • Billing/API issues: detect which API or quota is blocking and provide remediation steps.
  • Firestore rule/index problems: provide minimal repro queries and rule fixes.
  • Vertex AI call failures: surface model/region mismatches and add retries/backoff for transient errors.

Examples

Example: Gemini-backed chat API on Firebase

  • Request: “Deploy Hosting + a Function that powers a Gemini chat endpoint.”
  • Result: /api/chat function, Secret Manager wiring, and smoke tests.

Example: Firestore-powered RAG

  • Request: “Build a RAG flow that embeds docs and answers with citations.”
  • Result: ingestion plan, embedding + index strategy, and evaluation prompts.

Resources

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.