Implement Exa lint rules, policy enforcement, and automated guardrails. Use when setting up code quality rules for Exa integrations, implementing pre-commit hooks, or configuring CI policy checks for Exa best practices. Trigger with phrases like "exa policy", "exa lint", "exa guardrails", "exa best practices check", "exa eslint".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: exa-policy-guardrails description: | Implement Exa lint rules, policy enforcement, and automated guardrails. Use when setting up code quality rules for Exa integrations, implementing pre-commit hooks, or configuring CI policy checks for Exa best practices. Trigger with phrases like "exa policy", "exa lint", "exa guardrails", "exa best practices check", "exa eslint". allowed-tools: Read, Write, Edit, Bash(npx:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Exa Policy & Guardrails
Overview
Automated policy enforcement and guardrails for Exa integrations.
Prerequisites
- ESLint configured in project
- Pre-commit hooks infrastructure
- CI/CD pipeline with policy checks
- TypeScript for type enforcement
ESLint Rules
Custom Exa Plugin
// eslint-plugin-exa/rules/no-hardcoded-keys.js
module.exports = {
meta: {
type: 'problem',
docs: {
description: 'Disallow hardcoded Exa API keys',
},
fixable: 'code',
},
create(context) {
return {
Literal(node) {
if (typeof node.value === 'string') {
if (node.value.match(/^sk_(live|test)_[a-zA-Z0-9]{24,}/)) {
context.report({
node,
message: 'Hardcoded Exa API key detected',
});
}
}
},
};
},
};
ESLint Configuration
// .eslintrc.js
module.exports = {
plugins: ['exa'],
rules: {
'exa/no-hardcoded-keys': 'error',
'exa/require-error-handling': 'warn',
'exa/use-typed-client': 'warn',
},
};
Pre-Commit Hooks
# .pre-commit-config.yaml
repos:
- repo: local
hooks:
- id: exa-secrets-check
name: Check for Exa secrets
entry: bash -c 'git diff --cached --name-only | xargs grep -l "sk_live_" && exit 1 || exit 0'
language: system
pass_filenames: false
- id: exa-config-validate
name: Validate Exa configuration
entry: node scripts/validate-exa-config.js
language: node
files: '\.exa\.json$'
TypeScript Strict Patterns
// Enforce typed configuration
interface ExaStrictConfig {
apiKey: string; // Required
environment: 'development' | 'staging' | 'production'; // Enum
timeout: number; // Required number, not optional
retries: number;
}
// Disallow any in Exa code
// @ts-expect-error - Using any is forbidden
const client = new Client({ apiKey: any });
// Prefer this
const client = new ExaClient(config satisfies ExaStrictConfig);
Architecture Decision Records
ADR Template
# ADR-001: Exa Client Initialization
## Status
Accepted
## Context
We need to decide how to initialize the Exa client across our application.
## Decision
We will use the singleton pattern with lazy initialization.
## Consequences
- Pro: Single client instance, connection reuse
- Pro: Easy to mock in tests
- Con: Global state requires careful lifecycle management
## Enforcement
- ESLint rule: exa/use-singleton-client
- CI check: grep for "new ExaClient(" outside allowed files
Policy-as-Code (OPA)
# exa-policy.rego
package exa
# Deny production API keys in non-production environments
deny[msg] {
input.environment != "production"
startswith(input.apiKey, "sk_live_")
msg := "Production API keys not allowed in non-production environment"
}
# Require minimum timeout
deny[msg] {
input.timeout < 10000
msg := sprintf("Timeout too low: %d < 10000ms minimum", [input.timeout])
}
# Require retry configuration
deny[msg] {
not input.retries
msg := "Retry configuration is required"
}
CI Policy Checks
# .github/workflows/exa-policy.yml
name: Exa Policy Check
on: [push, pull_request]
jobs:
policy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Check for hardcoded secrets
run: |
if grep -rE "sk_(live|test)_[a-zA-Z0-9]{24,}" --include="*.ts" --include="*.js" .; then
echo "ERROR: Hardcoded Exa keys found"
exit 1
fi
- name: Validate configuration schema
run: |
npx ajv validate -s exa-config.schema.json -d config/exa/*.json
- name: Run ESLint Exa rules
run: npx eslint --plugin exa --rule 'exa/no-hardcoded-keys: error' src/
Runtime Guardrails
// Prevent dangerous operations in production
const BLOCKED_IN_PROD = ['deleteAll', 'resetData', 'migrateDown'];
function guardExaOperation(operation: string): void {
const isProd = process.env.NODE_ENV === 'production';
if (isProd && BLOCKED_IN_PROD.includes(operation)) {
throw new Error(`Operation '${operation}' blocked in production`);
}
}
// Rate limit protection
function guardRateLimits(requestsInWindow: number): void {
const limit = parseInt(process.env.EXA_RATE_LIMIT || '100');
if (requestsInWindow > limit * 0.9) {
console.warn('Approaching Exa rate limit');
}
if (requestsInWindow >= limit) {
throw new Error('Exa rate limit exceeded - request blocked');
}
}
Instructions
Step 1: Create ESLint Rules
Implement custom lint rules for Exa patterns.
Step 2: Configure Pre-Commit Hooks
Set up hooks to catch issues before commit.
Step 3: Add CI Policy Checks
Implement policy-as-code in CI pipeline.
Step 4: Enable Runtime Guardrails
Add production safeguards for dangerous operations.
Output
- ESLint plugin with Exa rules
- Pre-commit hooks blocking secrets
- CI policy checks passing
- Runtime guardrails active
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| ESLint rule not firing | Wrong config | Check plugin registration |
| Pre-commit skipped | --no-verify | Enforce in CI |
| Policy false positive | Regex too broad | Narrow pattern match |
| Guardrail triggered | Actual issue | Fix or whitelist |
Examples
Quick ESLint Check
npx eslint --plugin exa --rule 'exa/no-hardcoded-keys: error' src/
Resources
Next Steps
For architecture blueprints, see exa-architecture-variants.
More by jeremylongshore
View allOauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
