Deploy Exa integrations to Vercel, Fly.io, and Cloud Run platforms. Use when deploying Exa-powered applications to production, configuring platform-specific secrets, or setting up deployment pipelines. Trigger with phrases like "deploy exa", "exa Vercel", "exa production deploy", "exa Cloud Run", "exa Fly.io".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: exa-deploy-integration description: | Deploy Exa integrations to Vercel, Fly.io, and Cloud Run platforms. Use when deploying Exa-powered applications to production, configuring platform-specific secrets, or setting up deployment pipelines. Trigger with phrases like "deploy exa", "exa Vercel", "exa production deploy", "exa Cloud Run", "exa Fly.io". allowed-tools: Read, Write, Edit, Bash(vercel:), Bash(fly:), Bash(gcloud:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Exa Deploy Integration
Overview
Deploy Exa-powered applications to popular platforms with proper secrets management.
Prerequisites
- Exa API keys for production environment
- Platform CLI installed (vercel, fly, or gcloud)
- Application code ready for deployment
- Environment variables documented
Vercel Deployment
Environment Setup
# Add Exa secrets to Vercel
vercel secrets add exa_api_key sk_live_***
vercel secrets add exa_webhook_secret whsec_***
# Link to project
vercel link
# Deploy preview
vercel
# Deploy production
vercel --prod
vercel.json Configuration
{
"env": {
"EXA_API_KEY": "@exa_api_key"
},
"functions": {
"api/**/*.ts": {
"maxDuration": 30
}
}
}
Fly.io Deployment
fly.toml
app = "my-exa-app"
primary_region = "iad"
[env]
NODE_ENV = "production"
[http_service]
internal_port = 3000
force_https = true
auto_stop_machines = true
auto_start_machines = true
Secrets
# Set Exa secrets
fly secrets set EXA_API_KEY=sk_live_***
fly secrets set EXA_WEBHOOK_SECRET=whsec_***
# Deploy
fly deploy
Google Cloud Run
Dockerfile
FROM node:20-slim
WORKDIR /app
COPY package*.json ./
RUN npm ci --only=production
COPY . .
CMD ["npm", "start"]
Deploy Script
#!/bin/bash
# deploy-cloud-run.sh
PROJECT_ID="${GOOGLE_CLOUD_PROJECT}"
SERVICE_NAME="exa-service"
REGION="us-central1"
# Build and push image
gcloud builds submit --tag gcr.io/$PROJECT_ID/$SERVICE_NAME
# Deploy to Cloud Run
gcloud run deploy $SERVICE_NAME \
--image gcr.io/$PROJECT_ID/$SERVICE_NAME \
--region $REGION \
--platform managed \
--allow-unauthenticated \
--set-secrets=EXA_API_KEY=exa-api-key:latest
Environment Configuration Pattern
// config/exa.ts
interface ExaConfig {
apiKey: string;
environment: 'development' | 'staging' | 'production';
webhookSecret?: string;
}
export function getExaConfig(): ExaConfig {
const env = process.env.NODE_ENV || 'development';
return {
apiKey: process.env.EXA_API_KEY!,
environment: env as ExaConfig['environment'],
webhookSecret: process.env.EXA_WEBHOOK_SECRET,
};
}
Health Check Endpoint
// api/health.ts
export async function GET() {
const exaStatus = await checkExaConnection();
return Response.json({
status: exaStatus ? 'healthy' : 'degraded',
services: {
exa: exaStatus,
},
timestamp: new Date().toISOString(),
});
}
Instructions
Step 1: Choose Deployment Platform
Select the platform that best fits your infrastructure needs and follow the platform-specific guide below.
Step 2: Configure Secrets
Store Exa API keys securely using the platform's secrets management.
Step 3: Deploy Application
Use the platform CLI to deploy your application with Exa integration.
Step 4: Verify Health
Test the health check endpoint to confirm Exa connectivity.
Output
- Application deployed to production
- Exa secrets securely configured
- Health check endpoint functional
- Environment-specific configuration in place
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Secret not found | Missing configuration | Add secret via platform CLI |
| Deploy timeout | Large build | Increase build timeout |
| Health check fails | Wrong API key | Verify environment variable |
| Cold start issues | No warm-up | Configure minimum instances |
Examples
Quick Deploy Script
#!/bin/bash
# Platform-agnostic deploy helper
case "$1" in
vercel)
vercel secrets add exa_api_key "$EXA_API_KEY"
vercel --prod
;;
fly)
fly secrets set EXA_API_KEY="$EXA_API_KEY"
fly deploy
;;
esac
Resources
Next Steps
For webhook handling, see exa-webhooks-events.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
