jeremylongshore

evaluating-machine-learning-models

@jeremylongshore/evaluating-machine-learning-models
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Build this skill allows AI assistant to evaluate machine learning models using a comprehensive suite of metrics. it should be used when the user requests model performance analysis, validation, or testing. AI assistant can use this skill to assess model accuracy, p... Use when appropriate context detected. Trigger with relevant phrases based on skill purpose.

Installation

$skills install @jeremylongshore/evaluating-machine-learning-models
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/ai-ml/model-evaluation-suite/skills/evaluating-machine-learning-models/SKILL.md
Branchmain
Scoped Name@jeremylongshore/evaluating-machine-learning-models

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: evaluating-machine-learning-models description: | Build this skill allows AI assistant to evaluate machine learning models using a comprehensive suite of metrics. it should be used when the user requests model performance analysis, validation, or testing. AI assistant can use this skill to assess model accuracy, p... Use when appropriate context detected. Trigger with relevant phrases based on skill purpose. allowed-tools: Read, Write, Edit, Grep, Glob, Bash(cmd:*) version: 1.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT

Model Evaluation Suite

This skill provides automated assistance for model evaluation suite tasks.

Overview

This skill empowers Claude to perform thorough evaluations of machine learning models, providing detailed performance insights. It leverages the model-evaluation-suite plugin to generate a range of metrics, enabling informed decisions about model selection and optimization.

How It Works

  1. Analyzing Context: Claude analyzes the user's request to identify the model to be evaluated and any specific metrics of interest.
  2. Executing Evaluation: Claude uses the /eval-model command to initiate the model evaluation process within the model-evaluation-suite plugin.
  3. Presenting Results: Claude presents the generated metrics and insights to the user, highlighting key performance indicators and potential areas for improvement.

When to Use This Skill

This skill activates when you need to:

  • Assess the performance of a machine learning model.
  • Compare the performance of multiple models.
  • Identify areas where a model can be improved.
  • Validate a model's performance before deployment.

Examples

Example 1: Evaluating Model Accuracy

User request: "Evaluate the accuracy of my image classification model."

The skill will:

  1. Invoke the /eval-model command.
  2. Analyze the model's performance on a held-out dataset.
  3. Report the accuracy score and other relevant metrics.

Example 2: Comparing Model Performance

User request: "Compare the F1-score of model A and model B."

The skill will:

  1. Invoke the /eval-model command for both models.
  2. Extract the F1-score from the evaluation results.
  3. Present a comparison of the F1-scores for model A and model B.

Best Practices

  • Specify Metrics: Clearly define the specific metrics of interest for the evaluation.
  • Data Validation: Ensure the data used for evaluation is representative of the real-world data the model will encounter.
  • Interpret Results: Provide context and interpretation of the evaluation results to facilitate informed decision-making.

Integration

This skill integrates seamlessly with the model-evaluation-suite plugin, providing a comprehensive solution for model evaluation within the Claude Code environment. It can be combined with other skills to build automated machine learning workflows.

Prerequisites

  • Appropriate file access permissions
  • Required dependencies installed

Instructions

  1. Invoke this skill when the trigger conditions are met
  2. Provide necessary context and parameters
  3. Review the generated output
  4. Apply modifications as needed

Output

The skill produces structured output relevant to the task.

Error Handling

  • Invalid input: Prompts for correction
  • Missing dependencies: Lists required components
  • Permission errors: Suggests remediation steps

Resources

  • Project documentation
  • Related skills and commands

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.