Apply production-ready Deepgram SDK patterns for TypeScript and Python. Use when implementing Deepgram integrations, refactoring SDK usage, or establishing team coding standards for Deepgram. Trigger with phrases like "deepgram SDK patterns", "deepgram best practices", "deepgram code patterns", "idiomatic deepgram", "deepgram typescript".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: deepgram-sdk-patterns description: | Apply production-ready Deepgram SDK patterns for TypeScript and Python. Use when implementing Deepgram integrations, refactoring SDK usage, or establishing team coding standards for Deepgram. Trigger with phrases like "deepgram SDK patterns", "deepgram best practices", "deepgram code patterns", "idiomatic deepgram", "deepgram typescript". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Deepgram SDK Patterns
Overview
Production-ready patterns for Deepgram SDK integration with proper error handling, typing, and structure.
Prerequisites
- Completed
deepgram-install-authsetup - Familiarity with async/await patterns
- Understanding of error handling best practices
Instructions
Step 1: Create Type-Safe Client Singleton
Implement a singleton pattern for the Deepgram client.
Step 2: Add Robust Error Handling
Wrap all API calls with proper error handling and logging.
Step 3: Implement Response Validation
Validate API responses before processing.
Step 4: Add Retry Logic
Implement exponential backoff for transient failures.
Output
- Type-safe client singleton
- Robust error handling with structured logging
- Automatic retry with exponential backoff
- Runtime validation for API responses
Error Handling
| Error | Cause | Solution |
|---|---|---|
| Type Mismatch | Incorrect response shape | Add runtime validation |
| Client Undefined | Singleton not initialized | Call init() before use |
| Memory Leak | Multiple client instances | Use singleton pattern |
| Timeout | Large audio file | Increase timeout settings |
Examples
TypeScript Client Singleton
// lib/deepgram.ts
import { createClient, DeepgramClient } from '@deepgram/sdk';
let client: DeepgramClient | null = null;
export function getDeepgramClient(): DeepgramClient {
if (!client) {
const apiKey = process.env.DEEPGRAM_API_KEY;
if (!apiKey) {
throw new Error('DEEPGRAM_API_KEY environment variable not set');
}
client = createClient(apiKey);
}
return client;
}
export function resetClient(): void {
client = null;
}
Typed Transcription Response
// types/deepgram.ts
export interface TranscriptWord {
word: string;
start: number;
end: number;
confidence: number;
punctuated_word?: string;
}
export interface TranscriptAlternative {
transcript: string;
confidence: number;
words: TranscriptWord[];
}
export interface TranscriptChannel {
alternatives: TranscriptAlternative[];
}
export interface TranscriptResult {
results: {
channels: TranscriptChannel[];
utterances?: Array<{
start: number;
end: number;
transcript: string;
speaker: number;
}>;
};
metadata: {
request_id: string;
model_uuid: string;
model_info: Record<string, unknown>;
};
}
Error Handling Wrapper
// lib/transcribe.ts
import { getDeepgramClient } from './deepgram';
import { TranscriptResult } from '../types/deepgram';
export class TranscriptionError extends Error {
constructor(
message: string,
public readonly code: string,
public readonly requestId?: string
) {
super(message);
this.name = 'TranscriptionError';
}
}
export async function transcribeUrl(
url: string,
options: { model?: string; language?: string } = {}
): Promise<TranscriptResult> {
const client = getDeepgramClient();
try {
const { result, error } = await client.listen.prerecorded.transcribeUrl(
{ url },
{
model: options.model || 'nova-2',
language: options.language || 'en',
smart_format: true,
punctuate: true,
}
);
if (error) {
throw new TranscriptionError(
error.message || 'Transcription failed',
error.code || 'UNKNOWN_ERROR'
);
}
return result as TranscriptResult;
} catch (err) {
if (err instanceof TranscriptionError) throw err;
throw new TranscriptionError(
err instanceof Error ? err.message : 'Unknown error',
'NETWORK_ERROR'
);
}
}
Retry with Exponential Backoff
// lib/retry.ts
interface RetryOptions {
maxRetries?: number;
baseDelay?: number;
maxDelay?: number;
}
export async function withRetry<T>(
fn: () => Promise<T>,
options: RetryOptions = {}
): Promise<T> {
const { maxRetries = 3, baseDelay = 1000, maxDelay = 10000 } = options;
let lastError: Error | undefined;
for (let attempt = 0; attempt <= maxRetries; attempt++) {
try {
return await fn();
} catch (error) {
lastError = error instanceof Error ? error : new Error(String(error));
// Don't retry on auth errors
if (lastError.message.includes('401') ||
lastError.message.includes('403')) {
throw lastError;
}
if (attempt < maxRetries) {
const delay = Math.min(baseDelay * Math.pow(2, attempt), maxDelay);
await new Promise(resolve => setTimeout(resolve, delay));
}
}
}
throw lastError;
}
// Usage
const result = await withRetry(() => transcribeUrl(audioUrl));
Python Patterns
# lib/deepgram_client.py
from deepgram import DeepgramClient, PrerecordedOptions
from functools import lru_cache
import os
@lru_cache(maxsize=1)
def get_deepgram_client() -> DeepgramClient:
"""Get or create Deepgram client singleton."""
api_key = os.environ.get('DEEPGRAM_API_KEY')
if not api_key:
raise ValueError('DEEPGRAM_API_KEY environment variable not set')
return DeepgramClient(api_key)
def transcribe_url(url: str, model: str = 'nova-2') -> dict:
"""Transcribe audio from URL with error handling."""
client = get_deepgram_client()
options = PrerecordedOptions(
model=model,
smart_format=True,
punctuate=True,
)
try:
response = client.listen.rest.v("1").transcribe_url(
{"url": url},
options
)
return response.to_dict()
except Exception as e:
raise TranscriptionError(str(e)) from e
Resources
Next Steps
Proceed to deepgram-core-workflow-a for speech-to-text workflow implementation.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
