jeremylongshore

deepgram-reference-architecture

@jeremylongshore/deepgram-reference-architecture
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Implement Deepgram reference architecture for scalable transcription systems. Use when designing transcription pipelines, building production architectures, or planning Deepgram integration at scale. Trigger with phrases like "deepgram architecture", "transcription pipeline", "deepgram system design", "deepgram at scale", "enterprise deepgram".

Installation

$skills install @jeremylongshore/deepgram-reference-architecture
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/deepgram-pack/skills/deepgram-reference-architecture/SKILL.md
Branchmain
Scoped Name@jeremylongshore/deepgram-reference-architecture

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: deepgram-reference-architecture description: | Implement Deepgram reference architecture for scalable transcription systems. Use when designing transcription pipelines, building production architectures, or planning Deepgram integration at scale. Trigger with phrases like "deepgram architecture", "transcription pipeline", "deepgram system design", "deepgram at scale", "enterprise deepgram". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Deepgram Reference Architecture

Overview

Reference architectures for building scalable, production-ready transcription systems with Deepgram.

Architecture Patterns

1. Synchronous API

Direct API calls for small files and low latency requirements.

2. Asynchronous Queue

Queue-based processing for batch workloads.

3. Real-time Streaming

WebSocket-based live transcription.

4. Hybrid Architecture

Combination of patterns for different use cases.

Pattern 1: Synchronous API Architecture

+----------+     +------------+     +----------+
|  Client  | --> | API Server | --> | Deepgram |
+----------+     +------------+     +----------+
                       |
                       v
                 +-----------+
                 | Database  |
                 +-----------+

Best for:

  • Short audio files (<60 seconds)
  • Low latency requirements
  • Simple integration

Implementation

// architecture/sync/server.ts
import express from 'express';
import { createClient } from '@deepgram/sdk';
import { db } from './database';

const app = express();
const deepgram = createClient(process.env.DEEPGRAM_API_KEY!);

app.post('/transcribe', async (req, res) => {
  const { audioUrl, userId } = req.body;

  try {
    const { result, error } = await deepgram.listen.prerecorded.transcribeUrl(
      { url: audioUrl },
      { model: 'nova-2', smart_format: true }
    );

    if (error) throw error;

    const transcript = result.results.channels[0].alternatives[0].transcript;

    // Store result
    await db.transcripts.create({
      userId,
      audioUrl,
      transcript,
      metadata: result.metadata,
    });

    res.json({ transcript, requestId: result.metadata.request_id });
  } catch (err) {
    res.status(500).json({ error: 'Transcription failed' });
  }
});

Pattern 2: Asynchronous Queue Architecture

+----------+     +-------+     +--------+     +----------+
|  Client  | --> | Queue | --> | Worker | --> | Deepgram |
+----------+     +-------+     +--------+     +----------+
      ^                             |
      |                             v
      |                      +-----------+
      +----------------------| Database  |
            (poll/webhook)   +-----------+

Best for:

  • Long audio files
  • Batch processing
  • High throughput

Implementation

// architecture/async/producer.ts
import { Queue } from 'bullmq';
import { v4 as uuidv4 } from 'uuid';
import { redis } from './redis';

const transcriptionQueue = new Queue('transcription', {
  connection: redis,
});

export async function submitTranscription(
  audioUrl: string,
  options: { priority?: number; userId?: string } = {}
): Promise<string> {
  const jobId = uuidv4();

  await transcriptionQueue.add(
    'transcribe',
    { audioUrl, userId: options.userId },
    {
      jobId,
      priority: options.priority ?? 0,
      attempts: 3,
      backoff: {
        type: 'exponential',
        delay: 5000,
      },
    }
  );

  return jobId;
}

// architecture/async/worker.ts
import { Worker, Job } from 'bullmq';
import { createClient } from '@deepgram/sdk';
import { db } from './database';
import { notifyClient } from './notifications';

const deepgram = createClient(process.env.DEEPGRAM_API_KEY!);

const worker = new Worker(
  'transcription',
  async (job: Job) => {
    const { audioUrl, userId } = job.data;

    const { result, error } = await deepgram.listen.prerecorded.transcribeUrl(
      { url: audioUrl },
      { model: 'nova-2', smart_format: true }
    );

    if (error) throw error;

    const transcript = result.results.channels[0].alternatives[0].transcript;

    await db.transcripts.create({
      jobId: job.id,
      userId,
      audioUrl,
      transcript,
      metadata: result.metadata,
    });

    await notifyClient(userId, {
      jobId: job.id,
      status: 'completed',
      transcript,
    });

    return { transcript };
  },
  {
    connection: redis,
    concurrency: 10,
  }
);

worker.on('completed', (job) => {
  console.log(`Job ${job.id} completed`);
});

worker.on('failed', (job, error) => {
  console.error(`Job ${job?.id} failed:`, error);
});

Pattern 3: Real-time Streaming Architecture

+----------+     +-----------+     +----------+
|  Client  | <-> | WebSocket | <-> | Deepgram |
+----------+     |  Server   |     |   Live   |
                 +-----------+     +----------+
                       |
                       v
                 +-----------+
                 |  Storage  |
                 +-----------+

Best for:

  • Live transcription
  • Voice interfaces
  • Real-time applications

Implementation

// architecture/streaming/server.ts
import { WebSocketServer, WebSocket } from 'ws';
import { createClient, LiveTranscriptionEvents } from '@deepgram/sdk';

const wss = new WebSocketServer({ port: 8080 });
const deepgram = createClient(process.env.DEEPGRAM_API_KEY!);

wss.on('connection', (clientWs: WebSocket) => {
  console.log('Client connected');

  // Create Deepgram connection
  const dgConnection = deepgram.listen.live({
    model: 'nova-2',
    smart_format: true,
    interim_results: true,
  });

  dgConnection.on(LiveTranscriptionEvents.Open, () => {
    console.log('Deepgram connected');
  });

  dgConnection.on(LiveTranscriptionEvents.Transcript, (data) => {
    clientWs.send(JSON.stringify({
      type: 'transcript',
      transcript: data.channel.alternatives[0].transcript,
      isFinal: data.is_final,
    }));
  });

  dgConnection.on(LiveTranscriptionEvents.Error, (error) => {
    clientWs.send(JSON.stringify({
      type: 'error',
      error: error.message,
    }));
  });

  // Forward audio from client to Deepgram
  clientWs.on('message', (data: Buffer) => {
    dgConnection.send(data);
  });

  clientWs.on('close', () => {
    dgConnection.finish();
    console.log('Client disconnected');
  });
});

Pattern 4: Hybrid Architecture

                                +---------------+
                           +--> | Sync Handler  | --> Deepgram
                           |    +---------------+
+----------+     +-------+ |
|  Client  | --> | Router | |    +---------------+
+----------+     +-------+ +--> | Async Queue   | --> Worker --> Deepgram
                           |    +---------------+
                           |
                           |    +---------------+
                           +--> | Stream Handler| <-> Deepgram Live
                                +---------------+

Implementation

// architecture/hybrid/router.ts
import express from 'express';
import { syncHandler } from './handlers/sync';
import { asyncHandler } from './handlers/async';
import { streamHandler } from './handlers/stream';

const app = express();

// Route based on request characteristics
app.post('/transcribe', async (req, res) => {
  const { audioUrl, mode, audioDuration } = req.body;

  // Auto-select mode based on audio duration if not specified
  let selectedMode = mode;
  if (!selectedMode) {
    if (audioDuration && audioDuration < 60) {
      selectedMode = 'sync';
    } else if (audioDuration && audioDuration > 300) {
      selectedMode = 'async';
    } else {
      selectedMode = 'sync'; // default for unknown
    }
  }

  switch (selectedMode) {
    case 'sync':
      return syncHandler(req, res);
    case 'async':
      return asyncHandler(req, res);
    case 'stream':
      return streamHandler(req, res);
    default:
      return syncHandler(req, res);
  }
});

Enterprise Architecture

                                    +------------------+
                                    |   Load Balancer  |
                                    +------------------+
                                            |
            +-------------------------------+-------------------------------+
            |                               |                               |
    +---------------+               +---------------+               +---------------+
    |  API Server   |               |  API Server   |               |  API Server   |
    |   (Region A)  |               |   (Region B)  |               |   (Region C)  |
    +---------------+               +---------------+               +---------------+
            |                               |                               |
            v                               v                               v
    +---------------+               +---------------+               +---------------+
    | Redis Cluster |<------------->| Redis Cluster |<------------->| Redis Cluster |
    +---------------+               +---------------+               +---------------+
            |                               |                               |
            v                               v                               v
    +---------------+               +---------------+               +---------------+
    | Worker Pool   |               | Worker Pool   |               | Worker Pool   |
    +---------------+               +---------------+               +---------------+
            |                               |                               |
            +-------------------------------+-------------------------------+
                                            |
                                    +------------------+
                                    |    Deepgram API  |
                                    +------------------+

Enterprise Implementation

// architecture/enterprise/config.ts
export const config = {
  regions: ['us-east-1', 'us-west-2', 'eu-west-1'],
  redis: {
    cluster: true,
    nodes: [
      { host: 'redis-us-east.example.com', port: 6379 },
      { host: 'redis-us-west.example.com', port: 6379 },
      { host: 'redis-eu-west.example.com', port: 6379 },
    ],
  },
  workers: {
    concurrency: 20,
    maxRetries: 5,
  },
  rateLimit: {
    maxRequestsPerMinute: 1000,
    maxConcurrent: 100,
  },
  monitoring: {
    metricsEndpoint: '/metrics',
    healthEndpoint: '/health',
    tracingEnabled: true,
  },
};

// architecture/enterprise/load-balancer.ts
import { Router } from 'express';
import { getHealthyRegion } from './health';
import { forwardRequest } from './proxy';

const router = Router();

router.use('/transcribe', async (req, res) => {
  // Find healthiest region
  const region = await getHealthyRegion();

  if (!region) {
    return res.status(503).json({ error: 'Service unavailable' });
  }

  // Forward request
  await forwardRequest(req, res, region);
});

export default router;

Monitoring Architecture

// architecture/monitoring/dashboard.ts
import { Registry, collectDefaultMetrics, Counter, Histogram, Gauge } from 'prom-client';

export const registry = new Registry();
collectDefaultMetrics({ register: registry });

// Metrics
export const requestsTotal = new Counter({
  name: 'transcription_requests_total',
  help: 'Total transcription requests',
  labelNames: ['status', 'model', 'region'],
  registers: [registry],
});

export const latencyHistogram = new Histogram({
  name: 'transcription_latency_seconds',
  help: 'Transcription latency',
  labelNames: ['model'],
  buckets: [0.5, 1, 2, 5, 10, 30, 60, 120],
  registers: [registry],
});

export const queueDepth = new Gauge({
  name: 'transcription_queue_depth',
  help: 'Number of jobs in queue',
  registers: [registry],
});

export const activeConnections = new Gauge({
  name: 'deepgram_active_connections',
  help: 'Active Deepgram connections',
  registers: [registry],
});

Resources

Next Steps

Proceed to deepgram-multi-env-setup for multi-environment configuration.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.