Execute Deepgram production deployment checklist. Use when preparing for production launch, auditing production readiness, or verifying deployment configurations. Trigger with phrases like "deepgram production", "deploy deepgram", "deepgram prod checklist", "deepgram go-live", "production ready deepgram".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: deepgram-prod-checklist description: | Execute Deepgram production deployment checklist. Use when preparing for production launch, auditing production readiness, or verifying deployment configurations. Trigger with phrases like "deepgram production", "deploy deepgram", "deepgram prod checklist", "deepgram go-live", "production ready deepgram". allowed-tools: Read, Grep, Bash(curl:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Deepgram Production Checklist
Overview
Comprehensive checklist for deploying Deepgram integrations to production.
Pre-Deployment Checklist
API Configuration
- Production API key created and stored securely
- API key has appropriate scopes (minimal permissions)
- Key expiration set (recommended: 90 days)
- Fallback/backup key available
- Rate limits understood and planned for
Error Handling
- All API errors caught and logged
- Retry logic implemented with exponential backoff
- Circuit breaker pattern in place
- Fallback behavior defined for API failures
- User-friendly error messages configured
Performance
- Connection pooling configured
- Request timeouts set appropriately
- Concurrent request limits configured
- Audio preprocessing optimized
- Response caching implemented where applicable
Security
- API keys in secret manager (not environment variables in code)
- HTTPS enforced for all requests
- Input validation on audio URLs
- Sensitive data redaction configured
- Audit logging enabled
Monitoring
- Health check endpoint implemented
- Metrics collection configured
- Alerting rules defined
- Dashboard created
- Log aggregation set up
Documentation
- API integration documented
- Runbooks created
- On-call procedures defined
- Escalation path established
Production Configuration
TypeScript Production Client
// lib/deepgram-production.ts
import { createClient, DeepgramClient } from '@deepgram/sdk';
import { getSecret } from './secrets';
import { metrics } from './metrics';
import { logger } from './logger';
interface ProductionConfig {
timeout: number;
retries: number;
model: string;
}
const config: ProductionConfig = {
timeout: 30000,
retries: 3,
model: 'nova-2',
};
let client: DeepgramClient | null = null;
export async function getProductionClient(): Promise<DeepgramClient> {
if (client) return client;
const apiKey = await getSecret('DEEPGRAM_API_KEY');
client = createClient(apiKey, {
global: {
fetch: {
options: {
timeout: config.timeout,
},
},
},
});
return client;
}
export async function transcribeProduction(
audioUrl: string,
options: { language?: string; callback?: string } = {}
) {
const startTime = Date.now();
const requestId = crypto.randomUUID();
logger.info('Starting transcription', { requestId, audioUrl: sanitize(audioUrl) });
try {
const deepgram = await getProductionClient();
const { result, error } = await deepgram.listen.prerecorded.transcribeUrl(
{ url: audioUrl },
{
model: config.model,
language: options.language || 'en',
smart_format: true,
punctuate: true,
callback: options.callback,
}
);
const duration = Date.now() - startTime;
metrics.histogram('deepgram.transcription.duration', duration);
if (error) {
metrics.increment('deepgram.transcription.error');
logger.error('Transcription failed', { requestId, error: error.message });
throw new Error(error.message);
}
metrics.increment('deepgram.transcription.success');
logger.info('Transcription complete', {
requestId,
deepgramRequestId: result.metadata?.request_id,
duration,
});
return result;
} catch (err) {
metrics.increment('deepgram.transcription.exception');
logger.error('Transcription exception', {
requestId,
error: err instanceof Error ? err.message : 'Unknown error',
});
throw err;
}
}
function sanitize(url: string): string {
try {
const parsed = new URL(url);
return `${parsed.protocol}//${parsed.host}${parsed.pathname}`;
} catch {
return '[invalid-url]';
}
}
Health Check Endpoint
// routes/health.ts
import { getProductionClient } from '../lib/deepgram-production';
interface HealthStatus {
status: 'healthy' | 'degraded' | 'unhealthy';
timestamp: string;
checks: {
deepgram: {
status: 'pass' | 'fail';
latency?: number;
message?: string;
};
};
}
export async function healthCheck(): Promise<HealthStatus> {
const checks: HealthStatus['checks'] = {
deepgram: { status: 'fail' },
};
// Test Deepgram API
const startTime = Date.now();
try {
const client = await getProductionClient();
const { error } = await client.manage.getProjects();
checks.deepgram = {
status: error ? 'fail' : 'pass',
latency: Date.now() - startTime,
message: error?.message,
};
} catch (err) {
checks.deepgram = {
status: 'fail',
latency: Date.now() - startTime,
message: err instanceof Error ? err.message : 'Unknown error',
};
}
const allPassing = Object.values(checks).every(c => c.status === 'pass');
const anyFailing = Object.values(checks).some(c => c.status === 'fail');
return {
status: allPassing ? 'healthy' : anyFailing ? 'unhealthy' : 'degraded',
timestamp: new Date().toISOString(),
checks,
};
}
Production Metrics
// lib/metrics.ts
import { Counter, Histogram, Registry } from 'prom-client';
export const registry = new Registry();
export const transcriptionDuration = new Histogram({
name: 'deepgram_transcription_duration_seconds',
help: 'Duration of Deepgram transcription requests',
labelNames: ['status', 'model'],
buckets: [0.1, 0.5, 1, 2, 5, 10, 30, 60],
registers: [registry],
});
export const transcriptionTotal = new Counter({
name: 'deepgram_transcription_total',
help: 'Total number of transcription requests',
labelNames: ['status', 'error_code'],
registers: [registry],
});
export const audioProcessedSeconds = new Counter({
name: 'deepgram_audio_processed_seconds_total',
help: 'Total seconds of audio processed',
registers: [registry],
});
export const rateLimitHits = new Counter({
name: 'deepgram_rate_limit_hits_total',
help: 'Number of rate limit errors encountered',
registers: [registry],
});
export const metrics = {
recordTranscription(status: 'success' | 'error', duration: number, audioSeconds?: number) {
transcriptionDuration.labels(status, 'nova-2').observe(duration / 1000);
transcriptionTotal.labels(status, '').inc();
if (audioSeconds) {
audioProcessedSeconds.inc(audioSeconds);
}
},
recordRateLimitHit() {
rateLimitHits.inc();
},
};
Alerting Configuration
# prometheus/alerts/deepgram.yml
groups:
- name: deepgram
rules:
- alert: DeepgramHighErrorRate
expr: |
sum(rate(deepgram_transcription_total{status="error"}[5m])) /
sum(rate(deepgram_transcription_total[5m])) > 0.05
for: 5m
labels:
severity: critical
annotations:
summary: High Deepgram error rate
description: Error rate is above 5% for the last 5 minutes
- alert: DeepgramHighLatency
expr: |
histogram_quantile(0.95,
sum(rate(deepgram_transcription_duration_seconds_bucket[5m])) by (le)
) > 10
for: 5m
labels:
severity: warning
annotations:
summary: High Deepgram latency
description: P95 latency is above 10 seconds
- alert: DeepgramRateLimiting
expr: increase(deepgram_rate_limit_hits_total[1h]) > 10
for: 0m
labels:
severity: warning
annotations:
summary: Deepgram rate limiting detected
description: More than 10 rate limit hits in the last hour
- alert: DeepgramDown
expr: up{job="deepgram-health"} == 0
for: 2m
labels:
severity: critical
annotations:
summary: Deepgram health check failing
description: Health check has been failing for 2 minutes
Runbook Template
# Deepgram Incident Runbook
## Quick Reference
- **Deepgram Status Page**: https://status.deepgram.com
- **Console**: https://console.deepgram.com
- **Support**: support@deepgram.com
## Common Issues
### Issue: High Error Rate
**Symptoms**: Error rate > 5%
**Steps**:
1. Check Deepgram status page
2. Review error logs for specific error codes
3. If 429 errors: check rate limit configuration
4. If 401 errors: verify API key validity
5. If 500 errors: escalate to Deepgram support
### Issue: High Latency
**Symptoms**: P95 > 10 seconds
**Steps**:
1. Check audio file sizes (large files = longer processing)
2. Review concurrent request count
3. Check network latency to Deepgram
4. Consider using callback URLs for large files
### Issue: API Key Expiring
**Symptoms**: Alert from key monitoring
**Steps**:
1. Generate new API key in Console
2. Update secret manager
3. Verify new key works
4. Schedule deletion of old key (24h grace period)
Go-Live Checklist
## Pre-Launch (D-7)
- [ ] Load testing completed
- [ ] Security review passed
- [ ] Documentation finalized
- [ ] Team trained on runbooks
## Launch Day (D-0)
- [ ] Final smoke test passed
- [ ] Monitoring dashboards open
- [ ] On-call rotation confirmed
- [ ] Rollback plan ready
## Post-Launch (D+1)
- [ ] No critical alerts
- [ ] Error rate within SLA
- [ ] Performance metrics acceptable
- [ ] Customer feedback collected
Resources
Next Steps
Proceed to deepgram-upgrade-migration for SDK upgrade guidance.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
