jeremylongshore

deepgram-cost-tuning

@jeremylongshore/deepgram-cost-tuning
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Optimize Deepgram costs and usage for budget-conscious deployments. Use when reducing transcription costs, implementing usage controls, or optimizing pricing tier utilization. Trigger with phrases like "deepgram cost", "reduce deepgram spending", "deepgram pricing", "deepgram budget", "optimize deepgram usage".

Installation

$skills install @jeremylongshore/deepgram-cost-tuning
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/deepgram-pack/skills/deepgram-cost-tuning/SKILL.md
Branchmain
Scoped Name@jeremylongshore/deepgram-cost-tuning

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: deepgram-cost-tuning description: | Optimize Deepgram costs and usage for budget-conscious deployments. Use when reducing transcription costs, implementing usage controls, or optimizing pricing tier utilization. Trigger with phrases like "deepgram cost", "reduce deepgram spending", "deepgram pricing", "deepgram budget", "optimize deepgram usage". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Deepgram Cost Tuning

Overview

Optimize Deepgram usage and costs through smart model selection, audio preprocessing, and usage monitoring.

Deepgram Pricing Overview

ModelPrice per MinuteBest For
Nova-2$0.0043General transcription
Nova$0.0043General transcription
Whisper Cloud$0.0048Multilingual
Enhanced$0.0145Legacy support
Base$0.0048Basic transcription

Additional Features:

  • Speaker Diarization: +$0.0044/min
  • Smart Formatting: Included
  • Punctuation: Included

Cost Optimization Strategies

1. Model Selection

Choose the most cost-effective model for your use case.

2. Audio Preprocessing

Reduce audio duration and optimize format.

3. Usage Monitoring

Track and control usage in real-time.

4. Caching

Avoid re-transcribing the same content.

Examples

Cost-Optimized Transcription Service

// services/cost-optimized-transcription.ts
import { createClient } from '@deepgram/sdk';

interface CostConfig {
  maxMonthlySpend: number;
  warningThreshold: number; // percentage
  model: string;
  enabledFeatures: {
    diarization: boolean;
    smartFormat: boolean;
  };
}

interface CostMetrics {
  currentMonthMinutes: number;
  currentMonthCost: number;
  projectedMonthlyCost: number;
}

export class CostOptimizedTranscription {
  private client;
  private config: CostConfig;
  private metrics: CostMetrics;
  private modelCosts: Record<string, number> = {
    'nova-2': 0.0043,
    'nova': 0.0043,
    'base': 0.0048,
    'enhanced': 0.0145,
  };

  constructor(apiKey: string, config: Partial<CostConfig> = {}) {
    this.client = createClient(apiKey);
    this.config = {
      maxMonthlySpend: config.maxMonthlySpend ?? 100,
      warningThreshold: config.warningThreshold ?? 80,
      model: config.model ?? 'nova-2',
      enabledFeatures: config.enabledFeatures ?? {
        diarization: false,
        smartFormat: true,
      },
    };
    this.metrics = {
      currentMonthMinutes: 0,
      currentMonthCost: 0,
      projectedMonthlyCost: 0,
    };
  }

  private calculateCost(durationMinutes: number): number {
    let cost = durationMinutes * this.modelCosts[this.config.model];

    if (this.config.enabledFeatures.diarization) {
      cost += durationMinutes * 0.0044;
    }

    return cost;
  }

  private checkBudget(estimatedMinutes: number): void {
    const estimatedCost = this.calculateCost(estimatedMinutes);
    const projectedTotal = this.metrics.currentMonthCost + estimatedCost;

    if (projectedTotal > this.config.maxMonthlySpend) {
      throw new Error(`Budget exceeded. Current: $${this.metrics.currentMonthCost.toFixed(2)}, Estimated: $${estimatedCost.toFixed(2)}, Limit: $${this.config.maxMonthlySpend}`);
    }

    const percentage = (projectedTotal / this.config.maxMonthlySpend) * 100;
    if (percentage >= this.config.warningThreshold) {
      console.warn(`Budget warning: ${percentage.toFixed(1)}% of monthly limit used`);
    }
  }

  async transcribe(audioUrl: string, estimatedDurationMinutes: number) {
    this.checkBudget(estimatedDurationMinutes);

    const startTime = Date.now();

    const { result, error } = await this.client.listen.prerecorded.transcribeUrl(
      { url: audioUrl },
      {
        model: this.config.model,
        smart_format: this.config.enabledFeatures.smartFormat,
        diarize: this.config.enabledFeatures.diarization,
      }
    );

    if (error) throw error;

    // Track actual usage
    const actualDuration = result.metadata.duration / 60; // seconds to minutes
    const cost = this.calculateCost(actualDuration);

    this.metrics.currentMonthMinutes += actualDuration;
    this.metrics.currentMonthCost += cost;

    return {
      transcript: result.results.channels[0].alternatives[0].transcript,
      metadata: {
        duration: actualDuration,
        cost,
        model: this.config.model,
      },
    };
  }

  getMetrics(): CostMetrics & { budgetRemaining: number } {
    return {
      ...this.metrics,
      budgetRemaining: this.config.maxMonthlySpend - this.metrics.currentMonthCost,
    };
  }
}

Audio Duration Reducer

// lib/audio-reducer.ts
import ffmpeg from 'fluent-ffmpeg';

interface ReductionOptions {
  silenceThreshold: string; // dB
  silenceMinDuration: number; // seconds
  speed: number; // 1.0 = normal, 1.25 = 25% faster
}

export async function reduceDuration(
  inputPath: string,
  outputPath: string,
  options: Partial<ReductionOptions> = {}
): Promise<{ originalDuration: number; reducedDuration: number; savings: number }> {
  const {
    silenceThreshold = '-30dB',
    silenceMinDuration = 0.5,
    speed = 1.0,
  } = options;

  return new Promise((resolve, reject) => {
    let originalDuration = 0;
    let reducedDuration = 0;

    ffmpeg(inputPath)
      .on('codecData', (data) => {
        originalDuration = parseDuration(data.duration);
      })
      // Remove silence
      .audioFilters([
        `silenceremove=start_periods=1:start_silence=${silenceMinDuration}:start_threshold=${silenceThreshold}`,
        `silenceremove=stop_periods=-1:stop_silence=${silenceMinDuration}:stop_threshold=${silenceThreshold}`,
        // Optionally speed up
        ...(speed !== 1.0 ? [`atempo=${speed}`] : []),
      ])
      .output(outputPath)
      .on('end', () => {
        ffmpeg.ffprobe(outputPath, (err, metadata) => {
          if (err) return reject(err);
          reducedDuration = metadata.format.duration || 0;
          resolve({
            originalDuration,
            reducedDuration,
            savings: ((originalDuration - reducedDuration) / originalDuration) * 100,
          });
        });
      })
      .on('error', reject)
      .run();
  });
}

function parseDuration(duration: string): number {
  const parts = duration.split(':').map(Number);
  return parts[0] * 3600 + parts[1] * 60 + parts[2];
}

Usage Dashboard

// lib/usage-dashboard.ts
import { createClient } from '@deepgram/sdk';

interface UsageSummary {
  period: { start: Date; end: Date };
  totalMinutes: number;
  totalCost: number;
  byModel: Record<string, { minutes: number; cost: number }>;
  byDay: Array<{ date: string; minutes: number; cost: number }>;
  projections: {
    monthlyMinutes: number;
    monthlyCost: number;
  };
}

export class UsageDashboard {
  private client;
  private projectId: string;

  constructor(apiKey: string, projectId: string) {
    this.client = createClient(apiKey);
    this.projectId = projectId;
  }

  async getUsageSummary(daysBack = 30): Promise<UsageSummary> {
    const end = new Date();
    const start = new Date(end.getTime() - daysBack * 24 * 60 * 60 * 1000);

    // Get usage data from Deepgram API
    const { result, error } = await this.client.manage.getProjectUsageRequest(
      this.projectId,
      {
        start: start.toISOString(),
        end: end.toISOString(),
      }
    );

    if (error) throw error;

    // Aggregate data
    const byModel: Record<string, { minutes: number; cost: number }> = {};
    const byDay: Map<string, { minutes: number; cost: number }> = new Map();

    let totalMinutes = 0;
    let totalCost = 0;

    for (const request of result.requests || []) {
      const minutes = (request.duration || 0) / 60;
      const model = request.model || 'unknown';
      const cost = this.calculateCost(minutes, model);
      const dateKey = new Date(request.created).toISOString().split('T')[0];

      totalMinutes += minutes;
      totalCost += cost;

      if (!byModel[model]) {
        byModel[model] = { minutes: 0, cost: 0 };
      }
      byModel[model].minutes += minutes;
      byModel[model].cost += cost;

      if (!byDay.has(dateKey)) {
        byDay.set(dateKey, { minutes: 0, cost: 0 });
      }
      const day = byDay.get(dateKey)!;
      day.minutes += minutes;
      day.cost += cost;
    }

    // Calculate projections
    const dailyAverage = totalMinutes / daysBack;
    const daysInMonth = 30;

    return {
      period: { start, end },
      totalMinutes,
      totalCost,
      byModel,
      byDay: Array.from(byDay.entries()).map(([date, data]) => ({
        date,
        ...data,
      })),
      projections: {
        monthlyMinutes: dailyAverage * daysInMonth,
        monthlyCost: (totalCost / daysBack) * daysInMonth,
      },
    };
  }

  private calculateCost(minutes: number, model: string): number {
    const rates: Record<string, number> = {
      'nova-2': 0.0043,
      'nova': 0.0043,
      'base': 0.0048,
      'enhanced': 0.0145,
    };
    return minutes * (rates[model] || 0.0043);
  }
}

Cost Alerts

// lib/cost-alerts.ts
import { UsageDashboard } from './usage-dashboard';

interface AlertConfig {
  dailyLimit: number;
  weeklyLimit: number;
  monthlyLimit: number;
  alertChannels: Array<'email' | 'slack' | 'webhook'>;
}

export class CostAlerts {
  private dashboard: UsageDashboard;
  private config: AlertConfig;
  private alertsSent: Set<string> = new Set();

  constructor(dashboard: UsageDashboard, config: Partial<AlertConfig> = {}) {
    this.dashboard = dashboard;
    this.config = {
      dailyLimit: config.dailyLimit ?? 10,
      weeklyLimit: config.weeklyLimit ?? 50,
      monthlyLimit: config.monthlyLimit ?? 200,
      alertChannels: config.alertChannels ?? ['email'],
    };
  }

  async checkAndAlert(): Promise<void> {
    const daily = await this.dashboard.getUsageSummary(1);
    const weekly = await this.dashboard.getUsageSummary(7);
    const monthly = await this.dashboard.getUsageSummary(30);

    const alerts: string[] = [];

    if (daily.totalCost > this.config.dailyLimit) {
      alerts.push(`Daily spend ($${daily.totalCost.toFixed(2)}) exceeds limit ($${this.config.dailyLimit})`);
    }

    if (weekly.totalCost > this.config.weeklyLimit) {
      alerts.push(`Weekly spend ($${weekly.totalCost.toFixed(2)}) exceeds limit ($${this.config.weeklyLimit})`);
    }

    if (monthly.totalCost > this.config.monthlyLimit) {
      alerts.push(`Monthly spend ($${monthly.totalCost.toFixed(2)}) exceeds limit ($${this.config.monthlyLimit})`);
    }

    // Send alerts (deduplicated)
    for (const alert of alerts) {
      const alertKey = `${new Date().toDateString()}-${alert}`;
      if (!this.alertsSent.has(alertKey)) {
        await this.sendAlert(alert);
        this.alertsSent.add(alertKey);
      }
    }
  }

  private async sendAlert(message: string): Promise<void> {
    console.log(`COST ALERT: ${message}`);

    for (const channel of this.config.alertChannels) {
      switch (channel) {
        case 'slack':
          await this.sendSlackAlert(message);
          break;
        case 'email':
          await this.sendEmailAlert(message);
          break;
        case 'webhook':
          await this.sendWebhookAlert(message);
          break;
      }
    }
  }

  private async sendSlackAlert(message: string): Promise<void> {
    const webhookUrl = process.env.SLACK_WEBHOOK_URL;
    if (!webhookUrl) return;

    await fetch(webhookUrl, {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({
        text: `Deepgram Cost Alert: ${message}`,
      }),
    });
  }

  private async sendEmailAlert(message: string): Promise<void> {
    // Implement email sending
  }

  private async sendWebhookAlert(message: string): Promise<void> {
    // Implement webhook sending
  }
}

Model Selection for Cost

// lib/cost-aware-model.ts
interface ModelRecommendation {
  model: string;
  estimatedCost: number;
  qualityLevel: 'high' | 'medium' | 'low';
  reason: string;
}

export function recommendModel(params: {
  audioDurationMinutes: number;
  monthlyBudget: number;
  currentMonthSpend: number;
  qualityRequirement: 'high' | 'medium' | 'any';
}): ModelRecommendation {
  const { audioDurationMinutes, monthlyBudget, currentMonthSpend, qualityRequirement } = params;
  const budgetRemaining = monthlyBudget - currentMonthSpend;

  const models = [
    { name: 'nova-2', rate: 0.0043, quality: 'high' as const },
    { name: 'nova', rate: 0.0043, quality: 'high' as const },
    { name: 'base', rate: 0.0048, quality: 'low' as const },
  ];

  // Filter by quality requirement
  const eligible = models.filter(m => {
    if (qualityRequirement === 'high') return m.quality === 'high';
    if (qualityRequirement === 'medium') return m.quality !== 'low';
    return true;
  });

  // Find cheapest that fits budget
  for (const model of eligible.sort((a, b) => a.rate - b.rate)) {
    const cost = audioDurationMinutes * model.rate;
    if (cost <= budgetRemaining) {
      return {
        model: model.name,
        estimatedCost: cost,
        qualityLevel: model.quality,
        reason: `Best value within budget ($${budgetRemaining.toFixed(2)} remaining)`,
      };
    }
  }

  // Fallback to cheapest
  const cheapest = eligible[0];
  return {
    model: cheapest.name,
    estimatedCost: audioDurationMinutes * cheapest.rate,
    qualityLevel: cheapest.quality,
    reason: 'Warning: May exceed budget',
  };
}

Resources

Next Steps

Proceed to deepgram-reference-architecture for architecture patterns.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.