Implement speech-to-text transcription workflow with Deepgram. Use when building pre-recorded audio transcription, batch processing, or implementing core transcription features. Trigger with phrases like "deepgram transcription", "speech to text", "transcribe audio", "audio transcription workflow", "batch transcription".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: deepgram-core-workflow-a description: | Implement speech-to-text transcription workflow with Deepgram. Use when building pre-recorded audio transcription, batch processing, or implementing core transcription features. Trigger with phrases like "deepgram transcription", "speech to text", "transcribe audio", "audio transcription workflow", "batch transcription". allowed-tools: Read, Write, Edit, Bash(npm:), Bash(pip:), Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Deepgram Core Workflow A: Pre-recorded Transcription
Overview
Implement a complete pre-recorded audio transcription workflow using Deepgram's Nova-2 model.
Prerequisites
- Completed
deepgram-install-authsetup - Understanding of async patterns
- Audio files or URLs to transcribe
Instructions
Step 1: Set Up Transcription Service
Create a service class to handle transcription operations.
Step 2: Implement File and URL Transcription
Add methods for both local files and remote URLs.
Step 3: Add Feature Options
Configure punctuation, diarization, and formatting.
Step 4: Process Results
Extract and format transcription results.
Output
- Transcription service class
- Support for file and URL transcription
- Configurable transcription options
- Formatted transcript output
Error Handling
| Error | Cause | Solution |
|---|---|---|
| Audio Too Long | Exceeds limits | Split into chunks or use async |
| Unsupported Format | Invalid audio type | Convert to WAV/MP3/FLAC |
| Empty Response | No speech detected | Check audio quality |
| Timeout | Large file processing | Use callback URL pattern |
Examples
TypeScript Transcription Service
// services/transcription.ts
import { createClient } from '@deepgram/sdk';
import { readFile } from 'fs/promises';
export interface TranscriptionOptions {
model?: 'nova-2' | 'nova' | 'enhanced' | 'base';
language?: string;
punctuate?: boolean;
diarize?: boolean;
smartFormat?: boolean;
utterances?: boolean;
paragraphs?: boolean;
}
export interface TranscriptionResult {
transcript: string;
confidence: number;
words: Array<{
word: string;
start: number;
end: number;
confidence: number;
}>;
utterances?: Array<{
speaker: number;
transcript: string;
start: number;
end: number;
}>;
}
export class TranscriptionService {
private client;
constructor(apiKey: string) {
this.client = createClient(apiKey);
}
async transcribeUrl(
url: string,
options: TranscriptionOptions = {}
): Promise<TranscriptionResult> {
const { result, error } = await this.client.listen.prerecorded.transcribeUrl(
{ url },
{
model: options.model || 'nova-2',
language: options.language || 'en',
punctuate: options.punctuate ?? true,
diarize: options.diarize ?? false,
smart_format: options.smartFormat ?? true,
utterances: options.utterances ?? false,
paragraphs: options.paragraphs ?? false,
}
);
if (error) throw new Error(error.message);
return this.formatResult(result);
}
async transcribeFile(
filePath: string,
options: TranscriptionOptions = {}
): Promise<TranscriptionResult> {
const audio = await readFile(filePath);
const mimetype = this.getMimeType(filePath);
const { result, error } = await this.client.listen.prerecorded.transcribeFile(
audio,
{
model: options.model || 'nova-2',
language: options.language || 'en',
punctuate: options.punctuate ?? true,
diarize: options.diarize ?? false,
smart_format: options.smartFormat ?? true,
mimetype,
}
);
if (error) throw new Error(error.message);
return this.formatResult(result);
}
private formatResult(result: any): TranscriptionResult {
const channel = result.results.channels[0];
const alternative = channel.alternatives[0];
return {
transcript: alternative.transcript,
confidence: alternative.confidence,
words: alternative.words || [],
utterances: result.results.utterances,
};
}
private getMimeType(filePath: string): string {
const ext = filePath.split('.').pop()?.toLowerCase();
const mimeTypes: Record<string, string> = {
wav: 'audio/wav',
mp3: 'audio/mpeg',
flac: 'audio/flac',
ogg: 'audio/ogg',
m4a: 'audio/mp4',
webm: 'audio/webm',
};
return mimeTypes[ext || ''] || 'audio/wav';
}
}
Batch Transcription
// services/batch-transcription.ts
import { TranscriptionService, TranscriptionResult } from './transcription';
export async function batchTranscribe(
files: string[],
options: { concurrency?: number } = {}
): Promise<Map<string, TranscriptionResult | Error>> {
const service = new TranscriptionService(process.env.DEEPGRAM_API_KEY!);
const results = new Map<string, TranscriptionResult | Error>();
const concurrency = options.concurrency || 5;
// Process in batches
for (let i = 0; i < files.length; i += concurrency) {
const batch = files.slice(i, i + concurrency);
const batchResults = await Promise.allSettled(
batch.map(file => service.transcribeFile(file))
);
batchResults.forEach((result, index) => {
const file = batch[index];
if (result.status === 'fulfilled') {
results.set(file, result.value);
} else {
results.set(file, result.reason);
}
});
}
return results;
}
Speaker Diarization
// Example with speaker diarization
const result = await service.transcribeFile('./meeting.wav', {
diarize: true,
utterances: true,
});
// Format as conversation
result.utterances?.forEach(utterance => {
console.log(`Speaker ${utterance.speaker}: ${utterance.transcript}`);
});
Python Example
# services/transcription.py
from deepgram import DeepgramClient, PrerecordedOptions, FileSource
from pathlib import Path
from typing import Optional
import mimetypes
class TranscriptionService:
def __init__(self, api_key: str):
self.client = DeepgramClient(api_key)
def transcribe_url(
self,
url: str,
model: str = 'nova-2',
language: str = 'en',
diarize: bool = False
) -> dict:
options = PrerecordedOptions(
model=model,
language=language,
smart_format=True,
punctuate=True,
diarize=diarize,
)
response = self.client.listen.rest.v("1").transcribe_url(
{"url": url},
options
)
return self._format_result(response)
def transcribe_file(
self,
file_path: str,
model: str = 'nova-2',
diarize: bool = False
) -> dict:
with open(file_path, 'rb') as f:
audio = f.read()
mimetype, _ = mimetypes.guess_type(file_path)
source = FileSource(audio, mimetype or 'audio/wav')
options = PrerecordedOptions(
model=model,
smart_format=True,
punctuate=True,
diarize=diarize,
)
response = self.client.listen.rest.v("1").transcribe_file(
source,
options
)
return self._format_result(response)
def _format_result(self, response) -> dict:
channel = response.results.channels[0]
alternative = channel.alternatives[0]
return {
'transcript': alternative.transcript,
'confidence': alternative.confidence,
'words': alternative.words,
}
Resources
Next Steps
Proceed to deepgram-core-workflow-b for real-time streaming transcription.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
