Apply production-ready Customer.io SDK patterns. Use when implementing best practices, refactoring integrations, or optimizing Customer.io usage in your application. Trigger with phrases like "customer.io best practices", "customer.io patterns", "production customer.io", "customer.io architecture".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: customerio-sdk-patterns description: | Apply production-ready Customer.io SDK patterns. Use when implementing best practices, refactoring integrations, or optimizing Customer.io usage in your application. Trigger with phrases like "customer.io best practices", "customer.io patterns", "production customer.io", "customer.io architecture". allowed-tools: Read, Write, Edit, Bash(npm:), Bash(pip:), Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Customer.io SDK Patterns
Overview
Production-ready patterns for Customer.io SDK usage including error handling, batching, and type safety.
Prerequisites
- Customer.io SDK installed
- TypeScript project (recommended)
- Understanding of async/await patterns
Instructions
Pattern 1: Type-Safe Client
// types/customerio.ts
export interface UserAttributes {
email: string;
first_name?: string;
last_name?: string;
created_at?: number;
plan?: 'free' | 'pro' | 'enterprise';
[key: string]: string | number | boolean | undefined;
}
export interface EventData {
[key: string]: string | number | boolean | object;
}
export type EventName =
| 'signed_up'
| 'subscription_started'
| 'subscription_cancelled'
| 'feature_used'
| 'email_verified';
// lib/customerio-client.ts
import { TrackClient, RegionUS } from '@customerio/track';
import type { UserAttributes, EventData, EventName } from '../types/customerio';
export class TypedCustomerIO {
private client: TrackClient;
constructor() {
this.client = new TrackClient(
process.env.CUSTOMERIO_SITE_ID!,
process.env.CUSTOMERIO_API_KEY!,
{ region: RegionUS }
);
}
async identify(userId: string, attributes: UserAttributes): Promise<void> {
await this.client.identify(userId, {
...attributes,
_updated_at: Math.floor(Date.now() / 1000)
});
}
async track(userId: string, event: EventName, data?: EventData): Promise<void> {
await this.client.track(userId, { name: event, data });
}
}
Pattern 2: Retry with Exponential Backoff
// lib/customerio-resilient.ts
import { TrackClient } from '@customerio/track';
interface RetryConfig {
maxRetries: number;
baseDelay: number;
maxDelay: number;
}
const defaultRetryConfig: RetryConfig = {
maxRetries: 3,
baseDelay: 1000,
maxDelay: 10000
};
async function withRetry<T>(
operation: () => Promise<T>,
config: RetryConfig = defaultRetryConfig
): Promise<T> {
let lastError: Error | undefined;
for (let attempt = 0; attempt <= config.maxRetries; attempt++) {
try {
return await operation();
} catch (error) {
lastError = error as Error;
if (attempt === config.maxRetries) break;
// Don't retry on 4xx errors (client errors)
if (error instanceof Error && error.message.includes('4')) {
throw error;
}
const delay = Math.min(
config.baseDelay * Math.pow(2, attempt),
config.maxDelay
);
await new Promise(resolve => setTimeout(resolve, delay));
}
}
throw lastError;
}
export class ResilientCustomerIO {
private client: TrackClient;
constructor(siteId: string, apiKey: string) {
this.client = new TrackClient(siteId, apiKey, { region: RegionUS });
}
async identify(userId: string, attributes: Record<string, any>) {
return withRetry(() => this.client.identify(userId, attributes));
}
async track(userId: string, event: string, data?: Record<string, any>) {
return withRetry(() => this.client.track(userId, { name: event, data }));
}
}
Pattern 3: Event Queue with Batching
// lib/customerio-queue.ts
interface QueuedEvent {
userId: string;
event: string;
data?: Record<string, any>;
timestamp: number;
}
export class CustomerIOQueue {
private queue: QueuedEvent[] = [];
private flushInterval: NodeJS.Timer | null = null;
private maxBatchSize = 100;
private flushIntervalMs = 5000;
constructor(private client: TrackClient) {
this.startAutoFlush();
}
enqueue(userId: string, event: string, data?: Record<string, any>) {
this.queue.push({
userId,
event,
data,
timestamp: Date.now()
});
if (this.queue.length >= this.maxBatchSize) {
this.flush();
}
}
async flush(): Promise<void> {
if (this.queue.length === 0) return;
const batch = this.queue.splice(0, this.maxBatchSize);
await Promise.allSettled(
batch.map(item =>
this.client.track(item.userId, {
name: item.event,
data: { ...item.data, _queued_at: item.timestamp }
})
)
);
}
private startAutoFlush() {
this.flushInterval = setInterval(() => this.flush(), this.flushIntervalMs);
}
async shutdown(): Promise<void> {
if (this.flushInterval) {
clearInterval(this.flushInterval);
}
await this.flush();
}
}
Pattern 4: Singleton with Lazy Initialization
// lib/customerio-singleton.ts
import { TrackClient, RegionUS } from '@customerio/track';
let instance: TrackClient | null = null;
export function getCustomerIO(): TrackClient {
if (!instance) {
if (!process.env.CUSTOMERIO_SITE_ID || !process.env.CUSTOMERIO_API_KEY) {
throw new Error('Customer.io credentials not configured');
}
instance = new TrackClient(
process.env.CUSTOMERIO_SITE_ID,
process.env.CUSTOMERIO_API_KEY,
{ region: RegionUS }
);
}
return instance;
}
// Usage
import { getCustomerIO } from './lib/customerio-singleton';
await getCustomerIO().identify('user-123', { email: 'user@example.com' });
Output
- Type-safe Customer.io client
- Resilient error handling with retries
- Event batching for high-volume scenarios
- Singleton pattern for resource efficiency
Error Handling
| Error | Cause | Solution |
|---|---|---|
| Type mismatch | Invalid attribute type | Use TypeScript interfaces |
| Queue overflow | Too many events | Increase flush frequency or batch size |
| Retry exhausted | Persistent failure | Check network and credentials |
Resources
Next Steps
After implementing patterns, proceed to customerio-primary-workflow to implement messaging workflows.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
