Implement Customer.io rate limiting and backoff. Use when handling high-volume API calls, implementing retry logic, or optimizing API usage. Trigger with phrases like "customer.io rate limit", "customer.io throttle", "customer.io 429", "customer.io backoff".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: customerio-rate-limits description: | Implement Customer.io rate limiting and backoff. Use when handling high-volume API calls, implementing retry logic, or optimizing API usage. Trigger with phrases like "customer.io rate limit", "customer.io throttle", "customer.io 429", "customer.io backoff". allowed-tools: Read, Grep, Bash(curl:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Customer.io Rate Limits
Overview
Understand and implement proper rate limiting and backoff strategies for Customer.io API.
Rate Limit Details
Track API Limits
| Endpoint | Limit | Window |
|---|---|---|
| Identify | 100 requests/second | Per workspace |
| Track events | 100 requests/second | Per workspace |
| Batch operations | 100 requests/second | Per workspace |
| Page/screen | 100 requests/second | Per workspace |
App API Limits
| Endpoint | Limit | Window |
|---|---|---|
| Transactional email | 100/second | Per workspace |
| Transactional push | 100/second | Per workspace |
| API queries | 10/second | Per workspace |
Instructions
Step 1: Implement Rate Limiter
// lib/rate-limiter.ts
class RateLimiter {
private tokens: number;
private lastRefill: number;
private readonly maxTokens: number;
private readonly refillRate: number;
constructor(maxRequestsPerSecond: number = 100) {
this.maxTokens = maxRequestsPerSecond;
this.tokens = maxRequestsPerSecond;
this.refillRate = maxRequestsPerSecond;
this.lastRefill = Date.now();
}
private refill(): void {
const now = Date.now();
const elapsed = (now - this.lastRefill) / 1000;
this.tokens = Math.min(this.maxTokens, this.tokens + elapsed * this.refillRate);
this.lastRefill = now;
}
async acquire(): Promise<void> {
this.refill();
if (this.tokens >= 1) {
this.tokens -= 1;
return;
}
// Wait for token to become available
const waitTime = ((1 - this.tokens) / this.refillRate) * 1000;
await new Promise(resolve => setTimeout(resolve, waitTime));
this.tokens = 0;
this.lastRefill = Date.now();
}
}
export const trackApiLimiter = new RateLimiter(100);
Step 2: Implement Exponential Backoff
// lib/backoff.ts
interface BackoffConfig {
maxRetries: number;
baseDelay: number;
maxDelay: number;
jitterFactor: number;
}
const defaultConfig: BackoffConfig = {
maxRetries: 5,
baseDelay: 1000,
maxDelay: 32000,
jitterFactor: 0.1
};
function calculateDelay(attempt: number, config: BackoffConfig): number {
const exponentialDelay = config.baseDelay * Math.pow(2, attempt);
const cappedDelay = Math.min(exponentialDelay, config.maxDelay);
const jitter = cappedDelay * config.jitterFactor * Math.random();
return cappedDelay + jitter;
}
export async function withExponentialBackoff<T>(
operation: () => Promise<T>,
config: BackoffConfig = defaultConfig
): Promise<T> {
let lastError: Error | undefined;
for (let attempt = 0; attempt <= config.maxRetries; attempt++) {
try {
return await operation();
} catch (error: any) {
lastError = error;
// Don't retry on client errors (except 429)
if (error.statusCode >= 400 && error.statusCode < 500 && error.statusCode !== 429) {
throw error;
}
if (attempt < config.maxRetries) {
const delay = calculateDelay(attempt, config);
console.log(`Retry ${attempt + 1}/${config.maxRetries} after ${delay}ms`);
await new Promise(resolve => setTimeout(resolve, delay));
}
}
}
throw lastError;
}
Step 3: Create Rate-Limited Client
// lib/customerio-rate-limited.ts
import { TrackClient, RegionUS } from '@customerio/track';
import { trackApiLimiter } from './rate-limiter';
import { withExponentialBackoff } from './backoff';
export class RateLimitedCustomerIO {
private client: TrackClient;
constructor() {
this.client = new TrackClient(
process.env.CUSTOMERIO_SITE_ID!,
process.env.CUSTOMERIO_API_KEY!,
{ region: RegionUS }
);
}
async identify(userId: string, attributes: Record<string, any>) {
await trackApiLimiter.acquire();
return withExponentialBackoff(() =>
this.client.identify(userId, attributes)
);
}
async track(userId: string, event: string, data?: Record<string, any>) {
await trackApiLimiter.acquire();
return withExponentialBackoff(() =>
this.client.track(userId, { name: event, data })
);
}
// Batch operations for high volume
async batchIdentify(users: Array<{ id: string; attributes: Record<string, any> }>) {
const results: Array<{ id: string; success: boolean; error?: string }> = [];
for (const user of users) {
await trackApiLimiter.acquire();
try {
await withExponentialBackoff(() =>
this.client.identify(user.id, user.attributes)
);
results.push({ id: user.id, success: true });
} catch (error: any) {
results.push({ id: user.id, success: false, error: error.message });
}
}
return results;
}
}
Step 4: Handle 429 Response Headers
// lib/rate-limit-handler.ts
interface RateLimitInfo {
remaining: number;
resetTime: Date;
retryAfter?: number;
}
function parseRateLimitHeaders(headers: Headers): RateLimitInfo | null {
const remaining = headers.get('X-RateLimit-Remaining');
const reset = headers.get('X-RateLimit-Reset');
const retryAfter = headers.get('Retry-After');
if (!remaining || !reset) return null;
return {
remaining: parseInt(remaining, 10),
resetTime: new Date(parseInt(reset, 10) * 1000),
retryAfter: retryAfter ? parseInt(retryAfter, 10) : undefined
};
}
async function handleRateLimitResponse(response: Response): Promise<void> {
if (response.status === 429) {
const info = parseRateLimitHeaders(response.headers);
const waitTime = info?.retryAfter || 60;
console.warn(`Rate limited. Waiting ${waitTime}s before retry.`);
await new Promise(resolve => setTimeout(resolve, waitTime * 1000));
}
}
Step 5: Queue-Based Rate Limiting
// lib/customerio-queue.ts
import PQueue from 'p-queue';
const queue = new PQueue({
concurrency: 10,
interval: 1000,
intervalCap: 100 // 100 requests per second
});
export class QueuedCustomerIO {
private client: TrackClient;
constructor() {
this.client = new TrackClient(
process.env.CUSTOMERIO_SITE_ID!,
process.env.CUSTOMERIO_API_KEY!,
{ region: RegionUS }
);
}
async identify(userId: string, attributes: Record<string, any>) {
return queue.add(() => this.client.identify(userId, attributes));
}
async track(userId: string, event: string, data?: Record<string, any>) {
return queue.add(() => this.client.track(userId, { name: event, data }));
}
// Get queue stats
getStats() {
return {
pending: queue.pending,
size: queue.size,
isPaused: queue.isPaused
};
}
}
Output
- Token bucket rate limiter
- Exponential backoff with jitter
- Rate-limited Customer.io client
- Queue-based rate limiting
Error Handling
| Scenario | Action |
|---|---|
| 429 received | Respect Retry-After header |
| Burst traffic | Use queue with concurrency limit |
| Sustained high volume | Implement sliding window |
Resources
Next Steps
After implementing rate limits, proceed to customerio-security-basics for security best practices.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
