jeremylongshore

customerio-performance-tuning

@jeremylongshore/customerio-performance-tuning
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Optimize Customer.io API performance. Use when improving response times, reducing latency, or optimizing high-volume integrations. Trigger with phrases like "customer.io performance", "optimize customer.io", "customer.io latency", "customer.io speed".

Installation

$skills install @jeremylongshore/customerio-performance-tuning
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/customerio-pack/skills/customerio-performance-tuning/SKILL.md
Branchmain
Scoped Name@jeremylongshore/customerio-performance-tuning

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: customerio-performance-tuning description: | Optimize Customer.io API performance. Use when improving response times, reducing latency, or optimizing high-volume integrations. Trigger with phrases like "customer.io performance", "optimize customer.io", "customer.io latency", "customer.io speed". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Customer.io Performance Tuning

Overview

Optimize Customer.io API performance for high-volume and low-latency integrations.

Prerequisites

  • Customer.io integration working
  • Monitoring infrastructure
  • Understanding of your traffic patterns

Instructions

Step 1: Connection Pooling

// lib/customerio-pooled.ts
import { TrackClient, RegionUS } from '@customerio/track';
import { Agent } from 'http';
import { Agent as HttpsAgent } from 'https';

// Create connection pool with keep-alive
const httpsAgent = new HttpsAgent({
  keepAlive: true,
  keepAliveMsecs: 30000,
  maxSockets: 100,
  maxFreeSockets: 20,
  timeout: 30000
});

// Create client with connection pooling
export function createPooledClient(): TrackClient {
  return new TrackClient(
    process.env.CUSTOMERIO_SITE_ID!,
    process.env.CUSTOMERIO_API_KEY!,
    {
      region: RegionUS,
      // Pass custom agent for connection pooling
      httpAgent: httpsAgent
    }
  );
}

// Singleton for connection reuse
let clientInstance: TrackClient | null = null;

export function getClient(): TrackClient {
  if (!clientInstance) {
    clientInstance = createPooledClient();
  }
  return clientInstance;
}

Step 2: Batch Processing

// lib/batch-processor.ts
import { TrackClient } from '@customerio/track';

interface BatchItem {
  type: 'identify' | 'track';
  userId: string;
  data: Record<string, any>;
}

export class BatchProcessor {
  private batch: BatchItem[] = [];
  private batchSize: number;
  private flushInterval: number;
  private timer: NodeJS.Timer | null = null;

  constructor(
    private client: TrackClient,
    options: { batchSize?: number; flushIntervalMs?: number } = {}
  ) {
    this.batchSize = options.batchSize || 100;
    this.flushInterval = options.flushIntervalMs || 1000;
    this.startFlushTimer();
  }

  add(item: BatchItem): void {
    this.batch.push(item);

    if (this.batch.length >= this.batchSize) {
      this.flush();
    }
  }

  async flush(): Promise<void> {
    if (this.batch.length === 0) return;

    const items = this.batch.splice(0, this.batchSize);

    // Process in parallel with concurrency limit
    const concurrency = 10;
    for (let i = 0; i < items.length; i += concurrency) {
      const chunk = items.slice(i, i + concurrency);
      await Promise.all(chunk.map(item => this.processItem(item)));
    }
  }

  private async processItem(item: BatchItem): Promise<void> {
    try {
      if (item.type === 'identify') {
        await this.client.identify(item.userId, item.data);
      } else {
        await this.client.track(item.userId, {
          name: item.data.event,
          data: item.data.properties
        });
      }
    } catch (error) {
      console.error(`Failed to process ${item.type} for ${item.userId}:`, error);
    }
  }

  private startFlushTimer(): void {
    this.timer = setInterval(() => this.flush(), this.flushInterval);
  }

  async shutdown(): Promise<void> {
    if (this.timer) {
      clearInterval(this.timer);
    }
    await this.flush();
  }
}

Step 3: Async Fire-and-Forget

// lib/async-tracker.ts
import { TrackClient } from '@customerio/track';

class AsyncTracker {
  private queue: Array<() => Promise<void>> = [];
  private processing = false;
  private concurrency = 5;

  constructor(private client: TrackClient) {}

  // Non-blocking identify
  identifyAsync(userId: string, attributes: Record<string, any>): void {
    this.enqueue(() => this.client.identify(userId, attributes));
  }

  // Non-blocking track
  trackAsync(userId: string, event: string, data?: Record<string, any>): void {
    this.enqueue(() => this.client.track(userId, { name: event, data }));
  }

  private enqueue(operation: () => Promise<void>): void {
    this.queue.push(operation);
    this.processQueue();
  }

  private async processQueue(): Promise<void> {
    if (this.processing) return;
    this.processing = true;

    while (this.queue.length > 0) {
      const batch = this.queue.splice(0, this.concurrency);
      await Promise.allSettled(batch.map(op => op()));
    }

    this.processing = false;
  }
}

export const asyncTracker = new AsyncTracker(getClient());

Step 4: Caching for Deduplication

// lib/dedup-cache.ts
import { LRUCache } from 'lru-cache';

interface CacheEntry {
  userId: string;
  attributes: Record<string, any>;
  timestamp: number;
}

const identifyCache = new LRUCache<string, CacheEntry>({
  max: 10000,
  ttl: 60000 // 1 minute
});

export function shouldIdentify(
  userId: string,
  attributes: Record<string, any>
): boolean {
  const cacheKey = `${userId}:${JSON.stringify(attributes)}`;
  const cached = identifyCache.get(cacheKey);

  if (cached) {
    // Skip if identical identify within TTL
    return false;
  }

  identifyCache.set(cacheKey, {
    userId,
    attributes,
    timestamp: Date.now()
  });

  return true;
}

// Track event deduplication
const eventCache = new LRUCache<string, number>({
  max: 50000,
  ttl: 5000 // 5 seconds
});

export function shouldTrack(
  userId: string,
  eventName: string,
  eventId?: string
): boolean {
  const cacheKey = eventId || `${userId}:${eventName}:${Date.now()}`;

  if (eventCache.has(cacheKey)) {
    return false;
  }

  eventCache.set(cacheKey, Date.now());
  return true;
}

Step 5: Regional Optimization

// lib/regional-client.ts
import { TrackClient, RegionUS, RegionEU } from '@customerio/track';

interface RegionalConfig {
  us: { siteId: string; apiKey: string };
  eu: { siteId: string; apiKey: string };
}

class RegionalCustomerIO {
  private clients: Map<string, TrackClient> = new Map();

  constructor(config: RegionalConfig) {
    this.clients.set('us', new TrackClient(
      config.us.siteId,
      config.us.apiKey,
      { region: RegionUS }
    ));

    this.clients.set('eu', new TrackClient(
      config.eu.siteId,
      config.eu.apiKey,
      { region: RegionEU }
    ));
  }

  private getClientForUser(userId: string, userRegion?: string): TrackClient {
    // Route to nearest region
    const region = userRegion || this.inferRegion(userId);
    return this.clients.get(region) || this.clients.get('us')!;
  }

  private inferRegion(userId: string): string {
    // Implement region inference logic
    // Could be based on user preferences, IP geolocation, etc.
    return 'us';
  }

  async identify(
    userId: string,
    attributes: Record<string, any>,
    region?: string
  ): Promise<void> {
    const client = this.getClientForUser(userId, region);
    await client.identify(userId, attributes);
  }
}

Step 6: Performance Monitoring

// lib/performance-monitor.ts
import { metrics } from './metrics';

function wrapWithTiming<T>(
  name: string,
  operation: () => Promise<T>
): Promise<T> {
  const start = Date.now();

  return operation()
    .then(result => {
      metrics.histogram(`customerio.${name}.latency`, Date.now() - start);
      metrics.increment(`customerio.${name}.success`);
      return result;
    })
    .catch(error => {
      metrics.histogram(`customerio.${name}.latency`, Date.now() - start);
      metrics.increment(`customerio.${name}.error`);
      throw error;
    });
}

// Usage
await wrapWithTiming('identify', () =>
  client.identify(userId, attributes)
);

Performance Benchmarks

OperationTarget LatencyNotes
Identify< 100msWith connection pooling
Track Event< 100msWith connection pooling
Batch (100 items)< 500msParallel processing
Webhook Processing< 50msExcluding downstream ops

Optimization Checklist

  • Connection pooling enabled
  • Batch processing for bulk operations
  • Async fire-and-forget for non-critical events
  • Deduplication cache implemented
  • Regional routing configured
  • Performance monitoring in place

Error Handling

IssueSolution
High latencyEnable connection pooling
Timeout errorsReduce payload size, increase timeout
Memory pressureLimit cache and queue sizes

Resources

Next Steps

After performance tuning, proceed to customerio-cost-tuning for cost optimization.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.