Set up Customer.io monitoring and observability. Use when implementing metrics, logging, alerting, or dashboards for Customer.io integrations. Trigger with phrases like "customer.io monitoring", "customer.io metrics", "customer.io dashboard", "customer.io alerts".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: customerio-observability description: | Set up Customer.io monitoring and observability. Use when implementing metrics, logging, alerting, or dashboards for Customer.io integrations. Trigger with phrases like "customer.io monitoring", "customer.io metrics", "customer.io dashboard", "customer.io alerts". allowed-tools: Read, Write, Edit, Bash(kubectl:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Customer.io Observability
Overview
Implement comprehensive observability for Customer.io integrations including metrics, logging, tracing, and alerting.
Prerequisites
- Customer.io integration deployed
- Monitoring infrastructure (Prometheus, Grafana, etc.)
- Log aggregation system
Key Metrics
| Metric | Type | Description |
|---|---|---|
customerio_api_latency_ms | Histogram | API call latency |
customerio_api_requests_total | Counter | Total API requests |
customerio_api_errors_total | Counter | API error count |
customerio_email_sent_total | Counter | Emails sent |
customerio_email_delivered_total | Counter | Emails delivered |
customerio_email_bounced_total | Counter | Email bounces |
customerio_webhook_received_total | Counter | Webhooks received |
Instructions
Step 1: Metrics Collection
// lib/metrics.ts
import { Counter, Histogram, Registry } from 'prom-client';
const register = new Registry();
// API metrics
export const apiLatency = new Histogram({
name: 'customerio_api_latency_ms',
help: 'Customer.io API call latency in milliseconds',
labelNames: ['operation', 'status'],
buckets: [10, 25, 50, 100, 250, 500, 1000, 2500, 5000],
registers: [register]
});
export const apiRequests = new Counter({
name: 'customerio_api_requests_total',
help: 'Total Customer.io API requests',
labelNames: ['operation', 'status'],
registers: [register]
});
export const apiErrors = new Counter({
name: 'customerio_api_errors_total',
help: 'Total Customer.io API errors',
labelNames: ['operation', 'error_type'],
registers: [register]
});
// Email metrics
export const emailsSent = new Counter({
name: 'customerio_email_sent_total',
help: 'Total emails sent via Customer.io',
labelNames: ['campaign_type'],
registers: [register]
});
export const emailsDelivered = new Counter({
name: 'customerio_email_delivered_total',
help: 'Total emails delivered',
labelNames: ['campaign_type'],
registers: [register]
});
export const emailsBounced = new Counter({
name: 'customerio_email_bounced_total',
help: 'Total email bounces',
labelNames: ['bounce_type'],
registers: [register]
});
// Webhook metrics
export const webhooksReceived = new Counter({
name: 'customerio_webhook_received_total',
help: 'Total webhooks received from Customer.io',
labelNames: ['event_type'],
registers: [register]
});
export { register };
Step 2: Instrumented Client
// lib/customerio-instrumented.ts
import { TrackClient, RegionUS } from '@customerio/track';
import * as metrics from './metrics';
export class InstrumentedCustomerIO {
private client: TrackClient;
constructor(siteId: string, apiKey: string) {
this.client = new TrackClient(siteId, apiKey, { region: RegionUS });
}
async identify(userId: string, attributes: Record<string, any>): Promise<void> {
const timer = metrics.apiLatency.startTimer({ operation: 'identify' });
try {
await this.client.identify(userId, attributes);
timer({ status: 'success' });
metrics.apiRequests.inc({ operation: 'identify', status: 'success' });
} catch (error: any) {
timer({ status: 'error' });
metrics.apiRequests.inc({ operation: 'identify', status: 'error' });
metrics.apiErrors.inc({
operation: 'identify',
error_type: error.statusCode || 'unknown'
});
throw error;
}
}
async track(userId: string, event: string, data?: Record<string, any>): Promise<void> {
const timer = metrics.apiLatency.startTimer({ operation: 'track' });
try {
await this.client.track(userId, { name: event, data });
timer({ status: 'success' });
metrics.apiRequests.inc({ operation: 'track', status: 'success' });
} catch (error: any) {
timer({ status: 'error' });
metrics.apiRequests.inc({ operation: 'track', status: 'error' });
metrics.apiErrors.inc({
operation: 'track',
error_type: error.statusCode || 'unknown'
});
throw error;
}
}
}
Step 3: Structured Logging
// lib/logger.ts
import pino from 'pino';
export const logger = pino({
name: 'customerio',
level: process.env.LOG_LEVEL || 'info',
formatters: {
level: (label) => ({ level: label })
},
base: {
service: 'customerio-integration',
environment: process.env.NODE_ENV
}
});
// Logging wrapper for Customer.io operations
export function logOperation(
operation: string,
userId: string,
data: any,
result: 'success' | 'error',
error?: Error
) {
const logData = {
operation,
userId,
result,
data: sanitizeForLogging(data),
...(error && {
error: {
message: error.message,
stack: error.stack
}
})
};
if (result === 'error') {
logger.error(logData, `Customer.io ${operation} failed`);
} else {
logger.info(logData, `Customer.io ${operation} succeeded`);
}
}
// Remove PII from logs
function sanitizeForLogging(data: any): any {
if (!data) return data;
const sanitized = { ...data };
const piiFields = ['email', 'phone', 'address', 'ssn'];
for (const field of piiFields) {
if (sanitized[field]) {
sanitized[field] = '[REDACTED]';
}
}
return sanitized;
}
Step 4: Distributed Tracing
// lib/tracing.ts
import { trace, SpanKind, SpanStatusCode } from '@opentelemetry/api';
const tracer = trace.getTracer('customerio-integration');
export async function withTracing<T>(
operationName: string,
attributes: Record<string, string>,
operation: () => Promise<T>
): Promise<T> {
return tracer.startActiveSpan(
`customerio.${operationName}`,
{
kind: SpanKind.CLIENT,
attributes: {
'customerio.operation': operationName,
...attributes
}
},
async (span) => {
try {
const result = await operation();
span.setStatus({ code: SpanStatusCode.OK });
return result;
} catch (error: any) {
span.setStatus({
code: SpanStatusCode.ERROR,
message: error.message
});
span.recordException(error);
throw error;
} finally {
span.end();
}
}
);
}
// Usage
await withTracing('identify', { userId }, () =>
client.identify(userId, attributes)
);
Step 5: Grafana Dashboard
{
"dashboard": {
"title": "Customer.io Integration",
"panels": [
{
"title": "API Latency (p50, p95, p99)",
"type": "timeseries",
"targets": [
{
"expr": "histogram_quantile(0.50, rate(customerio_api_latency_ms_bucket[5m]))",
"legendFormat": "p50"
},
{
"expr": "histogram_quantile(0.95, rate(customerio_api_latency_ms_bucket[5m]))",
"legendFormat": "p95"
},
{
"expr": "histogram_quantile(0.99, rate(customerio_api_latency_ms_bucket[5m]))",
"legendFormat": "p99"
}
]
},
{
"title": "API Request Rate",
"type": "timeseries",
"targets": [
{
"expr": "rate(customerio_api_requests_total[5m])",
"legendFormat": "{{operation}} - {{status}}"
}
]
},
{
"title": "Error Rate",
"type": "stat",
"targets": [
{
"expr": "sum(rate(customerio_api_errors_total[5m])) / sum(rate(customerio_api_requests_total[5m])) * 100",
"legendFormat": "Error Rate %"
}
],
"fieldConfig": {
"defaults": {
"thresholds": {
"steps": [
{ "value": 0, "color": "green" },
{ "value": 1, "color": "yellow" },
{ "value": 5, "color": "red" }
]
}
}
}
},
{
"title": "Email Delivery Funnel",
"type": "bargauge",
"targets": [
{
"expr": "sum(customerio_email_sent_total)",
"legendFormat": "Sent"
},
{
"expr": "sum(customerio_email_delivered_total)",
"legendFormat": "Delivered"
},
{
"expr": "sum(customerio_email_bounced_total)",
"legendFormat": "Bounced"
}
]
}
]
}
}
Step 6: Alerting Rules
# prometheus/alerts/customerio.yml
groups:
- name: customerio
rules:
- alert: CustomerIOHighErrorRate
expr: |
sum(rate(customerio_api_errors_total[5m]))
/ sum(rate(customerio_api_requests_total[5m])) > 0.05
for: 5m
labels:
severity: critical
annotations:
summary: Customer.io API error rate > 5%
description: Error rate is {{ $value | printf "%.2f" }}%
- alert: CustomerIOHighLatency
expr: |
histogram_quantile(0.99, rate(customerio_api_latency_ms_bucket[5m])) > 5000
for: 10m
labels:
severity: warning
annotations:
summary: Customer.io p99 latency > 5s
description: p99 latency is {{ $value | printf "%.0f" }}ms
- alert: CustomerIOHighBounceRate
expr: |
sum(rate(customerio_email_bounced_total[1h]))
/ sum(rate(customerio_email_sent_total[1h])) > 0.05
for: 30m
labels:
severity: warning
annotations:
summary: Email bounce rate > 5%
description: Bounce rate is {{ $value | printf "%.2f" }}%
- alert: CustomerIOWebhookProcessingFailed
expr: |
sum(rate(customerio_webhook_errors_total[5m])) > 0
for: 5m
labels:
severity: critical
annotations:
summary: Customer.io webhook processing failures
description: {{ $value }} webhooks failed in last 5 minutes
Observability Checklist
- API latency metrics collected
- Error rate tracking enabled
- Structured logging implemented
- Distributed tracing configured
- Grafana dashboard created
- Alert rules defined
- PII redacted from logs
- Log retention policy set
Error Handling
| Issue | Solution |
|---|---|
| Missing metrics | Check metric registration |
| High cardinality | Reduce label values |
| Log volume too high | Adjust log level |
Resources
Next Steps
After observability setup, proceed to customerio-advanced-troubleshooting for debugging.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
