jeremylongshore

customerio-deploy-pipeline

@jeremylongshore/customerio-deploy-pipeline
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Deploy Customer.io integrations to production. Use when deploying to cloud platforms, setting up production infrastructure, or automating deployments. Trigger with phrases like "deploy customer.io", "customer.io production", "customer.io cloud run", "customer.io kubernetes".

Installation

$skills install @jeremylongshore/customerio-deploy-pipeline
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/customerio-pack/skills/customerio-deploy-pipeline/SKILL.md
Branchmain
Scoped Name@jeremylongshore/customerio-deploy-pipeline

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: customerio-deploy-pipeline description: | Deploy Customer.io integrations to production. Use when deploying to cloud platforms, setting up production infrastructure, or automating deployments. Trigger with phrases like "deploy customer.io", "customer.io production", "customer.io cloud run", "customer.io kubernetes". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Customer.io Deploy Pipeline

Overview

Deploy Customer.io integrations to production cloud platforms with proper configuration and monitoring.

Prerequisites

  • CI/CD pipeline configured
  • Cloud platform access (GCP, AWS, Vercel, etc.)
  • Production credentials ready

Instructions

Step 1: Google Cloud Run Deployment

# .github/workflows/deploy-cloud-run.yml
name: Deploy to Cloud Run

on:
  push:
    branches: [main]

env:
  PROJECT_ID: ${{ secrets.GCP_PROJECT_ID }}
  REGION: us-central1
  SERVICE_NAME: customerio-service

jobs:
  deploy:
    runs-on: ubuntu-latest

    permissions:
      contents: read
      id-token: write

    steps:
      - uses: actions/checkout@v4

      - id: auth
        uses: google-github-actions/auth@v2
        with:
          workload_identity_provider: ${{ secrets.WIF_PROVIDER }}
          service_account: ${{ secrets.WIF_SERVICE_ACCOUNT }}

      - name: Set up Cloud SDK
        uses: google-github-actions/setup-gcloud@v2

      - name: Configure Docker
        run: gcloud auth configure-docker ${{ env.REGION }}-docker.pkg.dev

      - name: Build and Push
        run: |
          docker build -t ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/services/${{ env.SERVICE_NAME }}:${{ github.sha }} .
          docker push ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/services/${{ env.SERVICE_NAME }}:${{ github.sha }}

      - name: Deploy to Cloud Run
        run: |
          gcloud run deploy ${{ env.SERVICE_NAME }} \
            --image ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/services/${{ env.SERVICE_NAME }}:${{ github.sha }} \
            --region ${{ env.REGION }} \
            --platform managed \
            --set-secrets CUSTOMERIO_SITE_ID=customerio-site-id:latest,CUSTOMERIO_API_KEY=customerio-api-key:latest \
            --allow-unauthenticated

Step 2: Vercel Deployment

// vercel.json
{
  "buildCommand": "npm run build",
  "outputDirectory": "dist",
  "env": {
    "CUSTOMERIO_SITE_ID": "@customerio-site-id",
    "CUSTOMERIO_API_KEY": "@customerio-api-key"
  },
  "functions": {
    "api/**/*.ts": {
      "memory": 256,
      "maxDuration": 10
    }
  }
}
// api/customerio/identify.ts
import { TrackClient, RegionUS } from '@customerio/track';
import type { VercelRequest, VercelResponse } from '@vercel/node';

const client = new TrackClient(
  process.env.CUSTOMERIO_SITE_ID!,
  process.env.CUSTOMERIO_API_KEY!,
  { region: RegionUS }
);

export default async function handler(req: VercelRequest, res: VercelResponse) {
  if (req.method !== 'POST') {
    return res.status(405).json({ error: 'Method not allowed' });
  }

  try {
    const { userId, attributes } = req.body;
    await client.identify(userId, attributes);
    res.status(200).json({ success: true });
  } catch (error: any) {
    res.status(500).json({ error: error.message });
  }
}

Step 3: AWS Lambda Deployment

# serverless.yml
service: customerio-integration

provider:
  name: aws
  runtime: nodejs20.x
  region: us-east-1
  environment:
    CUSTOMERIO_SITE_ID: ${ssm:/customerio/site-id}
    CUSTOMERIO_API_KEY: ${ssm:/customerio/api-key}

functions:
  identify:
    handler: src/handlers/identify.handler
    events:
      - http:
          path: /identify
          method: post

  track:
    handler: src/handlers/track.handler
    events:
      - http:
          path: /track
          method: post

  webhook:
    handler: src/handlers/webhook.handler
    events:
      - http:
          path: /webhook
          method: post
// src/handlers/identify.ts
import { APIGatewayProxyHandler } from 'aws-lambda';
import { TrackClient, RegionUS } from '@customerio/track';

const client = new TrackClient(
  process.env.CUSTOMERIO_SITE_ID!,
  process.env.CUSTOMERIO_API_KEY!,
  { region: RegionUS }
);

export const handler: APIGatewayProxyHandler = async (event) => {
  try {
    const body = JSON.parse(event.body || '{}');
    await client.identify(body.userId, body.attributes);

    return {
      statusCode: 200,
      body: JSON.stringify({ success: true })
    };
  } catch (error: any) {
    return {
      statusCode: 500,
      body: JSON.stringify({ error: error.message })
    };
  }
};

Step 4: Kubernetes Deployment

# k8s/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: customerio-service
  labels:
    app: customerio-service
spec:
  replicas: 3
  selector:
    matchLabels:
      app: customerio-service
  template:
    metadata:
      labels:
        app: customerio-service
    spec:
      containers:
        - name: customerio-service
          image: gcr.io/PROJECT_ID/customerio-service:latest
          ports:
            - containerPort: 8080
          env:
            - name: CUSTOMERIO_SITE_ID
              valueFrom:
                secretKeyRef:
                  name: customerio-secrets
                  key: site-id
            - name: CUSTOMERIO_API_KEY
              valueFrom:
                secretKeyRef:
                  name: customerio-secrets
                  key: api-key
          resources:
            requests:
              memory: "128Mi"
              cpu: "100m"
            limits:
              memory: "256Mi"
              cpu: "200m"
          readinessProbe:
            httpGet:
              path: /health
              port: 8080
            initialDelaySeconds: 5
            periodSeconds: 10
          livenessProbe:
            httpGet:
              path: /health
              port: 8080
            initialDelaySeconds: 15
            periodSeconds: 20
---
apiVersion: v1
kind: Service
metadata:
  name: customerio-service
spec:
  selector:
    app: customerio-service
  ports:
    - port: 80
      targetPort: 8080
  type: ClusterIP

Step 5: Health Check Endpoint

// src/health.ts
import { TrackClient, RegionUS } from '@customerio/track';

interface HealthStatus {
  status: 'healthy' | 'degraded' | 'unhealthy';
  checks: {
    customerio: { status: string; latency?: number };
    database?: { status: string; latency?: number };
  };
  version: string;
  uptime: number;
}

const startTime = Date.now();

export async function healthCheck(): Promise<HealthStatus> {
  const checks: HealthStatus['checks'] = {
    customerio: { status: 'unknown' }
  };

  // Check Customer.io connectivity
  try {
    const start = Date.now();
    const client = new TrackClient(
      process.env.CUSTOMERIO_SITE_ID!,
      process.env.CUSTOMERIO_API_KEY!,
      { region: RegionUS }
    );

    await client.identify('health-check', { _health_check: true });
    checks.customerio = {
      status: 'healthy',
      latency: Date.now() - start
    };
  } catch (error) {
    checks.customerio = { status: 'unhealthy' };
  }

  const allHealthy = Object.values(checks).every(c => c.status === 'healthy');

  return {
    status: allHealthy ? 'healthy' : 'degraded',
    checks,
    version: process.env.APP_VERSION || '1.0.0',
    uptime: Date.now() - startTime
  };
}

Step 6: Blue-Green Deployment

#!/bin/bash
# scripts/blue-green-deploy.sh

set -e

CURRENT=$(gcloud run services describe customerio-service --region=us-central1 --format='value(status.traffic[0].revisionName)')
NEW_TAG="v$(date +%Y%m%d%H%M%S)"

echo "Current revision: $CURRENT"
echo "Deploying new revision: $NEW_TAG"

# Deploy new revision with no traffic
gcloud run deploy customerio-service \
  --image gcr.io/$PROJECT_ID/customerio-service:$NEW_TAG \
  --region us-central1 \
  --no-traffic

# Run smoke tests against new revision
NEW_URL=$(gcloud run services describe customerio-service --region=us-central1 --format='value(status.url)')
if ! curl -s "$NEW_URL/health" | grep -q '"status":"healthy"'; then
  echo "Health check failed, rolling back"
  exit 1
fi

# Gradually shift traffic
echo "Shifting 10% traffic to new revision"
gcloud run services update-traffic customerio-service \
  --region us-central1 \
  --to-revisions LATEST=10

sleep 60

echo "Shifting 50% traffic"
gcloud run services update-traffic customerio-service \
  --region us-central1 \
  --to-revisions LATEST=50

sleep 60

echo "Shifting 100% traffic"
gcloud run services update-traffic customerio-service \
  --region us-central1 \
  --to-revisions LATEST=100

echo "Deployment complete"

Output

  • Cloud Run deployment workflow
  • Vercel serverless deployment
  • AWS Lambda configuration
  • Kubernetes deployment manifests
  • Health check endpoint
  • Blue-green deployment script

Error Handling

IssueSolution
Secret not foundVerify secret name and permissions
Health check failingCheck Customer.io credentials
Cold start timeoutIncrease memory/timeout limits

Resources

Next Steps

After deployment, proceed to customerio-webhooks-events for webhook handling.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.