jeremylongshore

customerio-debug-bundle

@jeremylongshore/customerio-debug-bundle
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Collect Customer.io debug evidence for support. Use when creating support tickets, reporting issues, or documenting integration problems. Trigger with phrases like "customer.io debug", "customer.io support ticket", "collect customer.io logs", "customer.io diagnostics".

Installation

$skills install @jeremylongshore/customerio-debug-bundle
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/customerio-pack/skills/customerio-debug-bundle/SKILL.md
Branchmain
Scoped Name@jeremylongshore/customerio-debug-bundle

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: customerio-debug-bundle description: | Collect Customer.io debug evidence for support. Use when creating support tickets, reporting issues, or documenting integration problems. Trigger with phrases like "customer.io debug", "customer.io support ticket", "collect customer.io logs", "customer.io diagnostics". allowed-tools: Read, Grep, Bash(curl:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Customer.io Debug Bundle

Overview

Collect comprehensive debug information for Customer.io support tickets and troubleshooting.

Prerequisites

  • Customer.io API credentials
  • Access to application logs
  • User ID or email of affected user

Instructions

Step 1: Create Debug Script

#!/bin/bash
# debug-customerio.sh

OUTPUT_DIR="customerio-debug-$(date +%Y%m%d-%H%M%S)"
mkdir -p "$OUTPUT_DIR"

echo "Customer.io Debug Bundle" > "$OUTPUT_DIR/report.txt"
echo "Generated: $(date -u +%Y-%m-%dT%H:%M:%SZ)" >> "$OUTPUT_DIR/report.txt"
echo "" >> "$OUTPUT_DIR/report.txt"

# 1. API Connectivity Test
echo "=== API Connectivity ===" >> "$OUTPUT_DIR/report.txt"
curl -s -o "$OUTPUT_DIR/api-test.json" -w "%{http_code}" \
  -X GET "https://track.customer.io/api/v1/accounts" \
  -u "$CUSTOMERIO_SITE_ID:$CUSTOMERIO_API_KEY" \
  >> "$OUTPUT_DIR/report.txt"
echo "" >> "$OUTPUT_DIR/report.txt"

# 2. SDK Version
echo "=== SDK Version ===" >> "$OUTPUT_DIR/report.txt"
npm list @customerio/track 2>/dev/null >> "$OUTPUT_DIR/report.txt" || echo "Not using npm" >> "$OUTPUT_DIR/report.txt"
pip show customerio 2>/dev/null >> "$OUTPUT_DIR/report.txt" || echo "Not using pip" >> "$OUTPUT_DIR/report.txt"
echo "" >> "$OUTPUT_DIR/report.txt"

# 3. Environment (redacted)
echo "=== Environment ===" >> "$OUTPUT_DIR/report.txt"
echo "CUSTOMERIO_SITE_ID: ${CUSTOMERIO_SITE_ID:0:8}..." >> "$OUTPUT_DIR/report.txt"
echo "CUSTOMERIO_API_KEY: ${CUSTOMERIO_API_KEY:0:8}..." >> "$OUTPUT_DIR/report.txt"
echo "NODE_ENV: $NODE_ENV" >> "$OUTPUT_DIR/report.txt"
echo "" >> "$OUTPUT_DIR/report.txt"

echo "Debug bundle created: $OUTPUT_DIR"

Step 2: Collect User-Specific Data

// scripts/debug-user.ts
import { TrackClient, RegionUS } from '@customerio/track';

async function debugUser(userId: string) {
  const debug: Record<string, any> = {
    timestamp: new Date().toISOString(),
    userId,
    checks: {}
  };

  const client = new TrackClient(
    process.env.CUSTOMERIO_SITE_ID!,
    process.env.CUSTOMERIO_API_KEY!,
    { region: RegionUS }
  );

  // Test identify call
  try {
    await client.identify(userId, { _debug_check: true });
    debug.checks.identify = { status: 'success' };
  } catch (error: any) {
    debug.checks.identify = {
      status: 'failed',
      error: error.message,
      code: error.statusCode
    };
  }

  // Test track call
  try {
    await client.track(userId, {
      name: '_debug_event',
      data: { timestamp: Date.now() }
    });
    debug.checks.track = { status: 'success' };
  } catch (error: any) {
    debug.checks.track = {
      status: 'failed',
      error: error.message,
      code: error.statusCode
    };
  }

  console.log(JSON.stringify(debug, null, 2));
  return debug;
}

// Run with: npx ts-node scripts/debug-user.ts user-123
debugUser(process.argv[2] || 'debug-user');

Step 3: Collect Application Logs

// lib/customerio-logger.ts
import { createWriteStream } from 'fs';

class CustomerIOLogger {
  private logStream: NodeJS.WritableStream;

  constructor(logPath: string = './customerio-debug.log') {
    this.logStream = createWriteStream(logPath, { flags: 'a' });
  }

  log(event: {
    type: 'identify' | 'track' | 'error';
    userId?: string;
    data?: any;
    error?: any;
    duration?: number;
  }) {
    const logEntry = {
      timestamp: new Date().toISOString(),
      ...event
    };
    this.logStream.write(JSON.stringify(logEntry) + '\n');
  }

  // Wrap SDK calls with logging
  async wrapIdentify(
    client: TrackClient,
    userId: string,
    attributes: any
  ) {
    const start = Date.now();
    try {
      await client.identify(userId, attributes);
      this.log({
        type: 'identify',
        userId,
        data: attributes,
        duration: Date.now() - start
      });
    } catch (error: any) {
      this.log({
        type: 'error',
        userId,
        data: attributes,
        error: { message: error.message, code: error.statusCode },
        duration: Date.now() - start
      });
      throw error;
    }
  }
}

Step 4: Generate Support Report

// scripts/generate-support-report.ts
interface SupportReport {
  summary: string;
  environment: {
    sdkVersion: string;
    nodeVersion: string;
    region: string;
  };
  timeline: Array<{
    timestamp: string;
    event: string;
    details: string;
  }>;
  reproduction: {
    steps: string[];
    expected: string;
    actual: string;
  };
  evidence: {
    logs: string[];
    screenshots: string[];
    apiResponses: string[];
  };
}

function generateReport(): SupportReport {
  return {
    summary: 'Brief description of the issue',
    environment: {
      sdkVersion: require('@customerio/track/package.json').version,
      nodeVersion: process.version,
      region: process.env.CUSTOMERIO_REGION || 'us'
    },
    timeline: [
      { timestamp: '2024-01-15T10:00:00Z', event: 'First occurrence', details: '...' }
    ],
    reproduction: {
      steps: [
        '1. Call identify with user data',
        '2. Call track with event',
        '3. Check dashboard for user'
      ],
      expected: 'User appears in People section',
      actual: 'User not found, 401 error returned'
    },
    evidence: {
      logs: ['./customerio-debug.log'],
      screenshots: [],
      apiResponses: ['./debug-bundle/api-test.json']
    }
  };
}

Step 5: Bundle and Submit

#!/bin/bash
# Create debug bundle archive
DEBUG_DIR="customerio-debug-$(date +%Y%m%d-%H%M%S)"
mkdir -p "$DEBUG_DIR"

# Collect all debug files
cp customerio-debug.log "$DEBUG_DIR/" 2>/dev/null
cp -r debug-bundle/* "$DEBUG_DIR/" 2>/dev/null

# Redact sensitive data
sed -i 's/api_key=.*/api_key=REDACTED/g' "$DEBUG_DIR"/*.log 2>/dev/null
sed -i 's/"api_key":"[^"]*"/"api_key":"REDACTED"/g' "$DEBUG_DIR"/*.json 2>/dev/null

# Create archive
tar -czf "$DEBUG_DIR.tar.gz" "$DEBUG_DIR"
echo "Debug bundle ready: $DEBUG_DIR.tar.gz"
echo "Submit to: support@customer.io"

Output

  • Debug script for API testing
  • User-specific diagnostic data
  • Application log collection
  • Support report template
  • Compressed debug bundle

Error Handling

IssueSolution
Logs too largeUse tail -n 1000 to limit
Sensitive dataUse redaction script
Missing permissionsCheck file read access

Resources

Next Steps

After creating debug bundle, proceed to customerio-rate-limits to understand API limits.

More by jeremylongshore

View all
oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.

rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").