Optimize Clerk authentication performance. Use when improving auth response times, reducing latency, or optimizing Clerk SDK usage. Trigger with phrases like "clerk performance", "clerk optimization", "clerk slow", "clerk latency", "optimize clerk".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: clerk-performance-tuning description: | Optimize Clerk authentication performance. Use when improving auth response times, reducing latency, or optimizing Clerk SDK usage. Trigger with phrases like "clerk performance", "clerk optimization", "clerk slow", "clerk latency", "optimize clerk". allowed-tools: Read, Write, Edit, Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Clerk Performance Tuning
Overview
Optimize Clerk authentication for best performance and user experience.
Prerequisites
- Clerk integration working
- Performance monitoring in place
- Understanding of application architecture
Instructions
Step 1: Optimize Middleware
// middleware.ts - Optimized configuration
import { clerkMiddleware, createRouteMatcher } from '@clerk/nextjs/server'
// Pre-compile route matchers (done once at startup)
const isPublicRoute = createRouteMatcher([
'/',
'/sign-in(.*)',
'/sign-up(.*)',
'/api/public(.*)',
'/api/webhooks(.*)'
])
// Exclude static files from middleware processing
export const config = {
matcher: [
// Skip all static files and images
'/((?!_next|[^?]*\\.(?:html?|css|js(?!on)|jpe?g|webp|png|gif|svg|ttf|woff2?|ico|csv|docx?|xlsx?|zip|webmanifest)).*)',
// Always run for API routes
'/(api|trpc)(.*)'
]
}
export default clerkMiddleware(async (auth, request) => {
// Quick return for public routes
if (isPublicRoute(request)) {
return
}
// Protect other routes
await auth.protect()
})
Step 2: Implement User Data Caching
// lib/cached-user.ts
import { unstable_cache } from 'next/cache'
import { clerkClient, currentUser } from '@clerk/nextjs/server'
// Cache user data with Next.js cache
export const getCachedUser = unstable_cache(
async (userId: string) => {
const client = await clerkClient()
return client.users.getUser(userId)
},
['user-data'],
{
revalidate: 60, // 1 minute cache
tags: ['users']
}
)
// In-memory cache for very frequent lookups
const userCache = new Map<string, { data: any; expiry: number }>()
export async function getUserFast(userId: string) {
const cached = userCache.get(userId)
const now = Date.now()
if (cached && cached.expiry > now) {
return cached.data
}
const user = await getCachedUser(userId)
userCache.set(userId, {
data: user,
expiry: now + 30000 // 30 seconds
})
return user
}
// Invalidate cache on user update
export function invalidateUserCache(userId: string) {
userCache.delete(userId)
}
Step 3: Optimize Token Handling
// lib/optimized-auth.ts
'use client'
import { useAuth } from '@clerk/nextjs'
import { useRef } from 'react'
// Cache tokens to avoid repeated async calls
export function useOptimizedAuth() {
const { getToken, userId, isLoaded } = useAuth()
const tokenCache = useRef<{
token: string | null
expiry: number
} | null>(null)
const getCachedToken = async () => {
const now = Date.now()
// Return cached token if still valid (with 5 min buffer)
if (tokenCache.current &&
tokenCache.current.token &&
tokenCache.current.expiry > now + 300000) {
return tokenCache.current.token
}
// Get fresh token
const token = await getToken()
if (token) {
// Parse expiry from JWT
const payload = JSON.parse(atob(token.split('.')[1]))
tokenCache.current = {
token,
expiry: payload.exp * 1000
}
}
return token
}
return { getCachedToken, userId, isLoaded }
}
// Optimized fetch with token
export function useAuthFetch() {
const { getCachedToken } = useOptimizedAuth()
return async (url: string, options: RequestInit = {}) => {
const token = await getCachedToken()
return fetch(url, {
...options,
headers: {
...options.headers,
Authorization: `Bearer ${token}`,
'Content-Type': 'application/json'
}
})
}
}
Step 4: Lazy Load Auth Components
// components/lazy-auth.tsx
'use client'
import dynamic from 'next/dynamic'
import { Suspense } from 'react'
// Lazy load heavy auth components
const UserButton = dynamic(
() => import('@clerk/nextjs').then(mod => mod.UserButton),
{
loading: () => <div className="w-8 h-8 bg-gray-200 rounded-full animate-pulse" />,
ssr: false
}
)
const SignInButton = dynamic(
() => import('@clerk/nextjs').then(mod => mod.SignInButton),
{
loading: () => <button className="btn" disabled>Sign In</button>,
ssr: false
}
)
export function LazyUserButton() {
return (
<Suspense fallback={<div className="w-8 h-8 bg-gray-200 rounded-full" />}>
<UserButton afterSignOutUrl="/" />
</Suspense>
)
}
Step 5: Optimize Server Components
// app/dashboard/page.tsx
import { auth } from '@clerk/nextjs/server'
import { Suspense } from 'react'
// Use streaming for auth-dependent content
export default async function DashboardPage() {
return (
<div>
<h1>Dashboard</h1>
{/* Stream user-specific content */}
<Suspense fallback={<UserDataSkeleton />}>
<UserData />
</Suspense>
{/* Non-auth content renders immediately */}
<StaticContent />
</div>
)
}
async function UserData() {
const { userId } = await auth()
// Parallel data fetching
const [user, stats, notifications] = await Promise.all([
getUser(userId!),
getUserStats(userId!),
getNotifications(userId!)
])
return (
<div>
<UserProfile user={user} />
<UserStats stats={stats} />
<Notifications items={notifications} />
</div>
)
}
Step 6: Edge Runtime Optimization
// app/api/fast-auth/route.ts
import { auth } from '@clerk/nextjs/server'
// Use Edge runtime for faster cold starts
export const runtime = 'edge'
export async function GET() {
const { userId } = await auth()
if (!userId) {
return Response.json({ error: 'Unauthorized' }, { status: 401 })
}
// Edge-compatible response
return Response.json({ userId })
}
Performance Metrics
| Operation | Target | Optimization |
|---|---|---|
| Middleware check | < 10ms | Route matcher pre-compilation |
| Token validation | < 50ms | JWT caching |
| User fetch | < 100ms | Multi-level caching |
| Page load (auth) | < 200ms | Streaming + lazy load |
Monitoring
// lib/performance-monitor.ts
export function measureAuthPerformance<T>(
name: string,
operation: () => Promise<T>
): Promise<T> {
const start = performance.now()
return operation().finally(() => {
const duration = performance.now() - start
console.log(`[Clerk Perf] ${name}: ${duration.toFixed(2)}ms`)
// Send to monitoring (DataDog, etc.)
if (duration > 100) {
console.warn(`[Clerk Perf] Slow operation: ${name}`)
}
})
}
// Usage
const user = await measureAuthPerformance('getUser', () =>
clerkClient.users.getUser(userId)
)
Output
- Optimized middleware configuration
- Multi-level caching strategy
- Token management optimization
- Lazy loading for auth components
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Slow page loads | Blocking auth calls | Use Suspense boundaries |
| High latency | No caching | Implement token/user cache |
| Bundle size | All components loaded | Lazy load auth components |
| Cold starts | Node runtime | Use Edge runtime |
Resources
Next Steps
Proceed to clerk-cost-tuning for cost optimization strategies.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
