jeremylongshore

clerk-observability

@jeremylongshore/clerk-observability
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Implement monitoring, logging, and observability for Clerk authentication. Use when setting up monitoring, debugging auth issues in production, or implementing audit logging. Trigger with phrases like "clerk monitoring", "clerk logging", "clerk observability", "clerk metrics", "clerk audit log".

Installation

$skills install @jeremylongshore/clerk-observability
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/clerk-pack/skills/clerk-observability/SKILL.md
Branchmain
Scoped Name@jeremylongshore/clerk-observability

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: clerk-observability description: | Implement monitoring, logging, and observability for Clerk authentication. Use when setting up monitoring, debugging auth issues in production, or implementing audit logging. Trigger with phrases like "clerk monitoring", "clerk logging", "clerk observability", "clerk metrics", "clerk audit log". allowed-tools: Read, Write, Edit, Bash(npm:*), Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Clerk Observability

Overview

Implement comprehensive monitoring, logging, and observability for Clerk authentication.

Prerequisites

  • Clerk integration working
  • Monitoring platform (DataDog, New Relic, Sentry, etc.)
  • Logging infrastructure

Instructions

Step 1: Authentication Event Logging

// lib/auth-logger.ts
import { auth, currentUser } from '@clerk/nextjs/server'

interface AuthEvent {
  type: string
  userId: string | null
  timestamp: string
  metadata: Record<string, any>
}

class AuthLogger {
  private events: AuthEvent[] = []

  log(type: string, metadata: Record<string, any> = {}) {
    const event: AuthEvent = {
      type,
      userId: null, // Set after auth
      timestamp: new Date().toISOString(),
      metadata
    }

    this.events.push(event)
    console.log('[Auth Event]', JSON.stringify(event))

    // Send to monitoring service
    this.sendToMonitoring(event)
  }

  async logWithAuth(type: string, metadata: Record<string, any> = {}) {
    const { userId, sessionId } = await auth()

    const event: AuthEvent = {
      type,
      userId,
      timestamp: new Date().toISOString(),
      metadata: {
        ...metadata,
        sessionId,
        hasUser: !!userId
      }
    }

    this.events.push(event)
    console.log('[Auth Event]', JSON.stringify(event))
    this.sendToMonitoring(event)
  }

  private sendToMonitoring(event: AuthEvent) {
    // DataDog example
    if (process.env.DD_API_KEY) {
      fetch('https://http-intake.logs.datadoghq.com/v1/input', {
        method: 'POST',
        headers: {
          'Content-Type': 'application/json',
          'DD-API-KEY': process.env.DD_API_KEY
        },
        body: JSON.stringify({
          ddsource: 'clerk',
          ddtags: 'env:production',
          message: event
        })
      }).catch(console.error)
    }
  }
}

export const authLogger = new AuthLogger()

Step 2: Middleware Monitoring

// middleware.ts
import { clerkMiddleware, createRouteMatcher } from '@clerk/nextjs/server'
import { NextResponse } from 'next/server'

const isPublicRoute = createRouteMatcher(['/', '/sign-in(.*)', '/sign-up(.*)'])

export default clerkMiddleware(async (auth, request) => {
  const start = performance.now()
  const { userId, sessionId } = await auth()

  // Log auth check
  const authDuration = performance.now() - start

  // Add monitoring headers
  const response = NextResponse.next()
  response.headers.set('x-auth-duration', String(authDuration.toFixed(2)))
  response.headers.set('x-auth-user', userId || 'anonymous')

  // Log slow auth
  if (authDuration > 100) {
    console.warn('[Clerk Perf] Slow auth check:', {
      duration: authDuration,
      path: request.nextUrl.pathname,
      userId
    })
  }

  // Metrics
  recordMetric('clerk.auth.duration', authDuration)
  recordMetric('clerk.auth.success', userId ? 1 : 0)

  return response
})

function recordMetric(name: string, value: number) {
  // Send to your metrics provider
  console.log(`[Metric] ${name}: ${value}`)
}

Step 3: Session Analytics

// lib/session-analytics.ts
import { clerkClient } from '@clerk/nextjs/server'

interface SessionMetrics {
  totalSessions: number
  activeSessions: number
  averageSessionDuration: number
  sessionsByDevice: Record<string, number>
}

export async function getSessionMetrics(userId: string): Promise<SessionMetrics> {
  const client = await clerkClient()

  const sessions = await client.sessions.getSessionList({
    userId,
    status: 'active'
  })

  const sessionsByDevice: Record<string, number> = {}
  let totalDuration = 0

  for (const session of sessions.data) {
    // Parse user agent for device type
    const device = parseDeviceType(session.userAgent || '')
    sessionsByDevice[device] = (sessionsByDevice[device] || 0) + 1

    // Calculate duration
    const duration = Date.now() - new Date(session.createdAt).getTime()
    totalDuration += duration
  }

  return {
    totalSessions: sessions.totalCount,
    activeSessions: sessions.data.length,
    averageSessionDuration: totalDuration / sessions.data.length || 0,
    sessionsByDevice
  }
}

function parseDeviceType(userAgent: string): string {
  if (/mobile/i.test(userAgent)) return 'mobile'
  if (/tablet/i.test(userAgent)) return 'tablet'
  return 'desktop'
}

Step 4: Webhook Event Tracking

// app/api/webhooks/clerk/route.ts
import { Webhook } from 'svix'
import { headers } from 'next/headers'
import { WebhookEvent } from '@clerk/nextjs/server'

const webhookMetrics = {
  received: 0,
  processed: 0,
  failed: 0,
  byType: {} as Record<string, number>
}

export async function POST(req: Request) {
  webhookMetrics.received++

  const start = performance.now()
  const headerPayload = await headers()
  const svix_id = headerPayload.get('svix-id')!

  // ... verification code ...

  try {
    const evt = wh.verify(body, headers) as WebhookEvent
    const eventType = evt.type

    // Track by type
    webhookMetrics.byType[eventType] = (webhookMetrics.byType[eventType] || 0) + 1

    // Process event
    await processEvent(evt)

    webhookMetrics.processed++

    // Log success
    console.log('[Webhook]', {
      type: eventType,
      id: svix_id,
      duration: performance.now() - start,
      status: 'success'
    })

    return Response.json({ success: true })
  } catch (error) {
    webhookMetrics.failed++

    console.error('[Webhook Error]', {
      id: svix_id,
      error: error.message,
      duration: performance.now() - start
    })

    return Response.json({ error: 'Processing failed' }, { status: 500 })
  }
}

// Expose metrics endpoint
export async function GET() {
  return Response.json(webhookMetrics)
}

Step 5: Error Tracking with Sentry

// lib/sentry-clerk.ts
import * as Sentry from '@sentry/nextjs'
import { auth, currentUser } from '@clerk/nextjs/server'

export async function initSentryWithClerk() {
  const { userId, orgId } = await auth()

  if (userId) {
    Sentry.setUser({
      id: userId,
      // Don't include email unless necessary for privacy
    })

    Sentry.setContext('clerk', {
      userId,
      orgId,
      hasOrg: !!orgId
    })
  }
}

// Wrapper for auth operations with error tracking
export async function withAuthErrorTracking<T>(
  operation: () => Promise<T>,
  context: string
): Promise<T> {
  try {
    return await operation()
  } catch (error) {
    Sentry.captureException(error, {
      tags: {
        component: 'clerk',
        operation: context
      }
    })
    throw error
  }
}

// Usage
const user = await withAuthErrorTracking(
  () => currentUser(),
  'get-current-user'
)

Step 6: Health Check Endpoint

// app/api/health/clerk/route.ts
import { auth, clerkClient } from '@clerk/nextjs/server'

interface HealthStatus {
  status: 'healthy' | 'degraded' | 'unhealthy'
  checks: {
    auth: { status: string; latency: number }
    api: { status: string; latency: number }
    webhooks: { status: string; lastReceived: string | null }
  }
  timestamp: string
}

export async function GET() {
  const health: HealthStatus = {
    status: 'healthy',
    checks: {
      auth: { status: 'unknown', latency: 0 },
      api: { status: 'unknown', latency: 0 },
      webhooks: { status: 'unknown', lastReceived: null }
    },
    timestamp: new Date().toISOString()
  }

  // Check auth function
  const authStart = performance.now()
  try {
    await auth()
    health.checks.auth = {
      status: 'ok',
      latency: performance.now() - authStart
    }
  } catch {
    health.checks.auth = {
      status: 'error',
      latency: performance.now() - authStart
    }
    health.status = 'degraded'
  }

  // Check API connectivity
  const apiStart = performance.now()
  try {
    const client = await clerkClient()
    await client.users.getUserList({ limit: 1 })
    health.checks.api = {
      status: 'ok',
      latency: performance.now() - apiStart
    }
  } catch {
    health.checks.api = {
      status: 'error',
      latency: performance.now() - apiStart
    }
    health.status = 'unhealthy'
  }

  return Response.json(health)
}

Dashboard Metrics

Track these key metrics:

  • Authentication success/failure rate
  • Auth latency (p50, p95, p99)
  • Active sessions over time
  • Webhook processing time
  • Error rate by type

Output

  • Authentication event logging
  • Performance monitoring
  • Error tracking integration
  • Health check endpoints

Error Handling

IssueMonitoring Action
High auth latencyAlert on p95 > 200ms
Failed webhooksAlert on failure rate > 1%
Session anomaliesTrack unusual session patterns
API errorsCapture with Sentry context

Resources

Next Steps

Proceed to clerk-incident-runbook for incident response procedures.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.