Optimize Clay API performance with caching, batching, and connection pooling. Use when experiencing slow API responses, implementing caching strategies, or optimizing request throughput for Clay integrations. Trigger with phrases like "clay performance", "optimize clay", "clay latency", "clay caching", "clay slow", "clay batch".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: clay-performance-tuning description: | Optimize Clay API performance with caching, batching, and connection pooling. Use when experiencing slow API responses, implementing caching strategies, or optimizing request throughput for Clay integrations. Trigger with phrases like "clay performance", "optimize clay", "clay latency", "clay caching", "clay slow", "clay batch". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Clay Performance Tuning
Overview
Optimize Clay API performance with caching, batching, and connection pooling.
Prerequisites
- Clay SDK installed
- Understanding of async patterns
- Redis or in-memory cache available (optional)
- Performance monitoring in place
Latency Benchmarks
| Operation | P50 | P95 | P99 |
|---|---|---|---|
| Read | 50ms | 150ms | 300ms |
| Write | 100ms | 250ms | 500ms |
| List | 75ms | 200ms | 400ms |
Caching Strategy
Response Caching
import { LRUCache } from 'lru-cache';
const cache = new LRUCache<string, any>({
max: 1000,
ttl: 60000, // 1 minute
updateAgeOnGet: true,
});
async function cachedClayRequest<T>(
key: string,
fetcher: () => Promise<T>,
ttl?: number
): Promise<T> {
const cached = cache.get(key);
if (cached) return cached as T;
const result = await fetcher();
cache.set(key, result, { ttl });
return result;
}
Redis Caching (Distributed)
import Redis from 'ioredis';
const redis = new Redis(process.env.REDIS_URL);
async function cachedWithRedis<T>(
key: string,
fetcher: () => Promise<T>,
ttlSeconds = 60
): Promise<T> {
const cached = await redis.get(key);
if (cached) return JSON.parse(cached);
const result = await fetcher();
await redis.setex(key, ttlSeconds, JSON.stringify(result));
return result;
}
Request Batching
import DataLoader from 'dataloader';
const clayLoader = new DataLoader<string, any>(
async (ids) => {
// Batch fetch from Clay
const results = await clayClient.batchGet(ids);
return ids.map(id => results.find(r => r.id === id) || null);
},
{
maxBatchSize: 100,
batchScheduleFn: callback => setTimeout(callback, 10),
}
);
// Usage - automatically batched
const [item1, item2, item3] = await Promise.all([
clayLoader.load('id-1'),
clayLoader.load('id-2'),
clayLoader.load('id-3'),
]);
Connection Optimization
import { Agent } from 'https';
// Keep-alive connection pooling
const agent = new Agent({
keepAlive: true,
maxSockets: 10,
maxFreeSockets: 5,
timeout: 30000,
});
const client = new ClayClient({
apiKey: process.env.CLAY_API_KEY!,
httpAgent: agent,
});
Pagination Optimization
async function* paginatedClayList<T>(
fetcher: (cursor?: string) => Promise<{ data: T[]; nextCursor?: string }>
): AsyncGenerator<T> {
let cursor: string | undefined;
do {
const { data, nextCursor } = await fetcher(cursor);
for (const item of data) {
yield item;
}
cursor = nextCursor;
} while (cursor);
}
// Usage
for await (const item of paginatedClayList(cursor =>
clayClient.list({ cursor, limit: 100 })
)) {
await process(item);
}
Performance Monitoring
async function measuredClayCall<T>(
operation: string,
fn: () => Promise<T>
): Promise<T> {
const start = performance.now();
try {
const result = await fn();
const duration = performance.now() - start;
console.log({ operation, duration, status: 'success' });
return result;
} catch (error) {
const duration = performance.now() - start;
console.error({ operation, duration, status: 'error', error });
throw error;
}
}
Instructions
Step 1: Establish Baseline
Measure current latency for critical Clay operations.
Step 2: Implement Caching
Add response caching for frequently accessed data.
Step 3: Enable Batching
Use DataLoader or similar for automatic request batching.
Step 4: Optimize Connections
Configure connection pooling with keep-alive.
Output
- Reduced API latency
- Caching layer implemented
- Request batching enabled
- Connection pooling configured
Error Handling
| Issue | Cause | Solution |
|---|---|---|
| Cache miss storm | TTL expired | Use stale-while-revalidate |
| Batch timeout | Too many items | Reduce batch size |
| Connection exhausted | No pooling | Configure max sockets |
| Memory pressure | Cache too large | Set max cache entries |
Examples
Quick Performance Wrapper
const withPerformance = <T>(name: string, fn: () => Promise<T>) =>
measuredClayCall(name, () =>
cachedClayRequest(`cache:${name}`, fn)
);
Resources
Next Steps
For cost optimization, see clay-cost-tuning.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
