Apply production-ready Apollo.io SDK patterns. Use when implementing Apollo integrations, refactoring API usage, or establishing team coding standards. Trigger with phrases like "apollo sdk patterns", "apollo best practices", "apollo code patterns", "idiomatic apollo", "apollo client wrapper".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: apollo-sdk-patterns description: | Apply production-ready Apollo.io SDK patterns. Use when implementing Apollo integrations, refactoring API usage, or establishing team coding standards. Trigger with phrases like "apollo sdk patterns", "apollo best practices", "apollo code patterns", "idiomatic apollo", "apollo client wrapper". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Apollo SDK Patterns
Overview
Production-ready patterns for Apollo.io API integration with type safety, error handling, and retry logic.
Prerequisites
- Completed
apollo-install-authsetup - Familiarity with async/await patterns
- Understanding of TypeScript generics
Pattern 1: Type-Safe Client Singleton
// src/lib/apollo/client.ts
import axios, { AxiosInstance, AxiosError } from 'axios';
import { z } from 'zod';
// Response schemas
const PersonSchema = z.object({
id: z.string(),
name: z.string(),
first_name: z.string().optional(),
last_name: z.string().optional(),
title: z.string().optional(),
email: z.string().email().optional(),
linkedin_url: z.string().url().optional(),
organization: z.object({
id: z.string(),
name: z.string(),
domain: z.string().optional(),
}).optional(),
});
const PeopleSearchResponseSchema = z.object({
people: z.array(PersonSchema),
pagination: z.object({
page: z.number(),
per_page: z.number(),
total_entries: z.number(),
total_pages: z.number(),
}),
});
export type Person = z.infer<typeof PersonSchema>;
export type PeopleSearchResponse = z.infer<typeof PeopleSearchResponseSchema>;
class ApolloClient {
private static instance: ApolloClient;
private client: AxiosInstance;
private constructor() {
this.client = axios.create({
baseURL: 'https://api.apollo.io/v1',
timeout: 30000,
headers: { 'Content-Type': 'application/json' },
params: { api_key: process.env.APOLLO_API_KEY },
});
this.setupInterceptors();
}
static getInstance(): ApolloClient {
if (!ApolloClient.instance) {
ApolloClient.instance = new ApolloClient();
}
return ApolloClient.instance;
}
private setupInterceptors() {
this.client.interceptors.response.use(
(response) => response,
this.handleError.bind(this)
);
}
private handleError(error: AxiosError) {
if (error.response?.status === 429) {
throw new ApolloRateLimitError('Rate limit exceeded');
}
if (error.response?.status === 401) {
throw new ApolloAuthError('Invalid API key');
}
throw error;
}
async searchPeople(params: PeopleSearchParams): Promise<PeopleSearchResponse> {
const { data } = await this.client.post('/people/search', params);
return PeopleSearchResponseSchema.parse(data);
}
}
export const apollo = ApolloClient.getInstance();
Pattern 2: Retry with Exponential Backoff
// src/lib/apollo/retry.ts
interface RetryConfig {
maxRetries: number;
baseDelay: number;
maxDelay: number;
}
const defaultConfig: RetryConfig = {
maxRetries: 3,
baseDelay: 1000,
maxDelay: 30000,
};
export async function withRetry<T>(
fn: () => Promise<T>,
config: Partial<RetryConfig> = {}
): Promise<T> {
const { maxRetries, baseDelay, maxDelay } = { ...defaultConfig, ...config };
let lastError: Error;
for (let attempt = 0; attempt <= maxRetries; attempt++) {
try {
return await fn();
} catch (error) {
lastError = error as Error;
if (error instanceof ApolloAuthError) {
throw error; // Don't retry auth errors
}
if (attempt < maxRetries) {
const delay = Math.min(baseDelay * Math.pow(2, attempt), maxDelay);
await new Promise((resolve) => setTimeout(resolve, delay));
}
}
}
throw lastError!;
}
// Usage
const people = await withRetry(() => apollo.searchPeople({ domain: 'stripe.com' }));
Pattern 3: Paginated Iterator
// src/lib/apollo/pagination.ts
export async function* paginateSearch(
searchFn: (page: number) => Promise<PeopleSearchResponse>,
options: { maxPages?: number } = {}
): AsyncGenerator<Person[], void, unknown> {
const maxPages = options.maxPages || Infinity;
let page = 1;
let totalPages = 1;
while (page <= Math.min(totalPages, maxPages)) {
const response = await searchFn(page);
totalPages = response.pagination.total_pages;
yield response.people;
page++;
// Respect rate limits
await new Promise((resolve) => setTimeout(resolve, 100));
}
}
// Usage
async function getAllPeople(domain: string): Promise<Person[]> {
const allPeople: Person[] = [];
for await (const batch of paginateSearch(
(page) => apollo.searchPeople({ q_organization_domains: [domain], page, per_page: 100 })
)) {
allPeople.push(...batch);
}
return allPeople;
}
Pattern 4: Request Batching
// src/lib/apollo/batch.ts
class ApolloBatcher {
private queue: Array<{ domain: string; resolve: Function; reject: Function }> = [];
private timeout: NodeJS.Timeout | null = null;
private readonly batchSize = 10;
private readonly batchDelay = 100;
async enrichCompany(domain: string): Promise<Organization> {
return new Promise((resolve, reject) => {
this.queue.push({ domain, resolve, reject });
this.scheduleBatch();
});
}
private scheduleBatch() {
if (this.timeout) return;
this.timeout = setTimeout(async () => {
this.timeout = null;
const batch = this.queue.splice(0, this.batchSize);
try {
// Apollo doesn't have batch endpoint, process sequentially with rate limiting
for (const item of batch) {
try {
const result = await apollo.enrichOrganization(item.domain);
item.resolve(result);
} catch (error) {
item.reject(error);
}
await new Promise((r) => setTimeout(r, 50)); // Rate limit spacing
}
} catch (error) {
batch.forEach((item) => item.reject(error));
}
if (this.queue.length > 0) {
this.scheduleBatch();
}
}, this.batchDelay);
}
}
export const apolloBatcher = new ApolloBatcher();
Pattern 5: Custom Error Classes
// src/lib/apollo/errors.ts
export class ApolloError extends Error {
constructor(message: string, public readonly code?: string) {
super(message);
this.name = 'ApolloError';
}
}
export class ApolloRateLimitError extends ApolloError {
constructor(message: string = 'Rate limit exceeded') {
super(message, 'RATE_LIMIT');
this.name = 'ApolloRateLimitError';
}
}
export class ApolloAuthError extends ApolloError {
constructor(message: string = 'Authentication failed') {
super(message, 'AUTH_ERROR');
this.name = 'ApolloAuthError';
}
}
export class ApolloValidationError extends ApolloError {
constructor(message: string, public readonly details?: unknown) {
super(message, 'VALIDATION_ERROR');
this.name = 'ApolloValidationError';
}
}
Output
- Type-safe client singleton with Zod validation
- Robust error handling with custom error classes
- Automatic retry with exponential backoff
- Async pagination iterator
- Request batching for bulk operations
Error Handling
| Pattern | When to Use |
|---|---|
| Singleton | Always - ensures single client instance |
| Retry | Network errors, 429/500 responses |
| Pagination | Large result sets (>100 records) |
| Batching | Multiple enrichment calls |
| Custom Errors | Distinguish error types in catch blocks |
Resources
Next Steps
Proceed to apollo-core-workflow-a for lead search implementation.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
