Implement Apollo.io rate limiting and backoff. Use when handling rate limits, implementing retry logic, or optimizing API request throughput. Trigger with phrases like "apollo rate limit", "apollo 429", "apollo throttling", "apollo backoff", "apollo request limits".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: apollo-rate-limits description: | Implement Apollo.io rate limiting and backoff. Use when handling rate limits, implementing retry logic, or optimizing API request throughput. Trigger with phrases like "apollo rate limit", "apollo 429", "apollo throttling", "apollo backoff", "apollo request limits". allowed-tools: Read, Grep, Bash(curl:*) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Apollo Rate Limits
Overview
Implement robust rate limiting and backoff strategies for Apollo.io API to maximize throughput while avoiding 429 errors.
Apollo Rate Limits
| Endpoint Category | Rate Limit | Window | Burst Limit |
|---|---|---|---|
| People Search | 100/min | 1 minute | 10/sec |
| Person Enrichment | 100/min | 1 minute | 10/sec |
| Organization Enrichment | 100/min | 1 minute | 10/sec |
| Sequences/Campaigns | 50/min | 1 minute | 5/sec |
| Bulk Operations | 10/min | 1 minute | 2/sec |
| General API | 100/min | 1 minute | 10/sec |
Rate Limit Headers
# Check current rate limit status
curl -I -X POST "https://api.apollo.io/v1/people/search" \
-H "Content-Type: application/json" \
-d '{"api_key": "'$APOLLO_API_KEY'", "per_page": 1}'
# Response headers:
# X-RateLimit-Limit: 100
# X-RateLimit-Remaining: 95
# X-RateLimit-Reset: 1640000000
# Retry-After: 60 (only when rate limited)
Implementation: Rate Limiter Class
// src/lib/apollo/rate-limiter.ts
interface RateLimiterConfig {
maxRequests: number;
windowMs: number;
minSpacingMs: number;
}
class RateLimiter {
private queue: Array<{
resolve: (value: void) => void;
reject: (error: Error) => void;
}> = [];
private requestTimestamps: number[] = [];
private lastRequestTime = 0;
private processing = false;
constructor(private config: RateLimiterConfig) {}
async acquire(): Promise<void> {
return new Promise((resolve, reject) => {
this.queue.push({ resolve, reject });
this.processQueue();
});
}
private async processQueue() {
if (this.processing || this.queue.length === 0) return;
this.processing = true;
while (this.queue.length > 0) {
// Clean old timestamps outside window
const now = Date.now();
this.requestTimestamps = this.requestTimestamps.filter(
(ts) => now - ts < this.config.windowMs
);
// Check if we're at capacity
if (this.requestTimestamps.length >= this.config.maxRequests) {
const oldestTs = this.requestTimestamps[0];
const waitTime = this.config.windowMs - (now - oldestTs) + 100;
await this.wait(waitTime);
continue;
}
// Enforce minimum spacing
const timeSinceLastRequest = now - this.lastRequestTime;
if (timeSinceLastRequest < this.config.minSpacingMs) {
await this.wait(this.config.minSpacingMs - timeSinceLastRequest);
}
// Process next request
const item = this.queue.shift()!;
this.requestTimestamps.push(Date.now());
this.lastRequestTime = Date.now();
item.resolve();
}
this.processing = false;
}
private wait(ms: number): Promise<void> {
return new Promise((resolve) => setTimeout(resolve, ms));
}
}
// Create rate limiter for Apollo
export const apolloRateLimiter = new RateLimiter({
maxRequests: 90, // Leave buffer below 100
windowMs: 60000,
minSpacingMs: 100, // 100ms between requests
});
Implementation: Exponential Backoff
// src/lib/apollo/backoff.ts
interface BackoffConfig {
initialDelayMs: number;
maxDelayMs: number;
maxRetries: number;
multiplier: number;
jitter: boolean;
}
const defaultConfig: BackoffConfig = {
initialDelayMs: 1000,
maxDelayMs: 60000,
maxRetries: 5,
multiplier: 2,
jitter: true,
};
export async function withBackoff<T>(
fn: () => Promise<T>,
config: Partial<BackoffConfig> = {}
): Promise<T> {
const cfg = { ...defaultConfig, ...config };
let lastError: Error;
let delay = cfg.initialDelayMs;
for (let attempt = 0; attempt <= cfg.maxRetries; attempt++) {
try {
await apolloRateLimiter.acquire();
return await fn();
} catch (error: any) {
lastError = error;
// Check if retryable
const status = error.response?.status;
if (status === 401 || status === 403 || status === 422) {
throw error; // Don't retry auth/validation errors
}
if (attempt === cfg.maxRetries) {
break;
}
// Get delay from Retry-After header or calculate
const retryAfter = error.response?.headers?.['retry-after'];
if (retryAfter) {
delay = parseInt(retryAfter) * 1000;
}
// Add jitter to prevent thundering herd
const jitter = cfg.jitter ? Math.random() * 1000 : 0;
const actualDelay = Math.min(delay + jitter, cfg.maxDelayMs);
console.log(`Retry ${attempt + 1}/${cfg.maxRetries} after ${actualDelay}ms`);
await new Promise((r) => setTimeout(r, actualDelay));
delay *= cfg.multiplier;
}
}
throw lastError!;
}
Implementation: Request Queue
// src/lib/apollo/request-queue.ts
import PQueue from 'p-queue';
// Concurrency-limited queue
export const apolloQueue = new PQueue({
concurrency: 5, // Max 5 concurrent requests
interval: 1000, // Per second
intervalCap: 10, // Max 10 per interval
});
// Usage
async function batchSearchPeople(domains: string[]): Promise<Person[]> {
const results = await Promise.all(
domains.map((domain) =>
apolloQueue.add(() =>
withBackoff(() => apollo.searchPeople({ q_organization_domains: [domain] }))
)
)
);
return results.flat().map((r) => r?.people || []).flat();
}
Usage Patterns
Pattern 1: Simple Rate-Limited Request
import { withBackoff } from './backoff';
const people = await withBackoff(() =>
apollo.searchPeople({
q_organization_domains: ['stripe.com'],
per_page: 100,
})
);
Pattern 2: Batch Processing with Queue
import { apolloQueue } from './request-queue';
async function enrichCompanies(domains: string[]) {
const results = [];
for (const domain of domains) {
const result = await apolloQueue.add(
() => withBackoff(() => apollo.enrichOrganization(domain)),
{ priority: 1 } // Lower priority
);
results.push(result);
}
return results;
}
Pattern 3: Priority Queue for Interactive vs Background
// High priority for user-facing requests
async function interactiveSearch(query: string) {
return apolloQueue.add(
() => withBackoff(() => apollo.searchPeople({ q_keywords: query })),
{ priority: 0 } // Highest priority
);
}
// Low priority for background sync
async function backgroundSync(contacts: string[]) {
return Promise.all(
contacts.map((id) =>
apolloQueue.add(
() => withBackoff(() => apollo.getContact(id)),
{ priority: 10 } // Low priority
)
)
);
}
Monitoring Rate Limit Usage
// src/lib/apollo/rate-monitor.ts
class RateLimitMonitor {
private requests: Array<{ timestamp: number; remaining: number }> = [];
recordRequest(remaining: number) {
this.requests.push({
timestamp: Date.now(),
remaining,
});
// Keep only last 5 minutes
const cutoff = Date.now() - 5 * 60 * 1000;
this.requests = this.requests.filter((r) => r.timestamp > cutoff);
}
getStats() {
const lastMinute = this.requests.filter(
(r) => r.timestamp > Date.now() - 60000
);
return {
requestsLastMinute: lastMinute.length,
currentRemaining: lastMinute[lastMinute.length - 1]?.remaining ?? 100,
utilizationPercent: (lastMinute.length / 100) * 100,
isNearLimit: lastMinute.length > 80,
};
}
}
export const rateLimitMonitor = new RateLimitMonitor();
Output
- Rate limiter class with token bucket algorithm
- Exponential backoff with jitter
- Request queue with concurrency control
- Priority-based request scheduling
- Rate limit monitoring and alerts
Error Handling
| Scenario | Strategy |
|---|---|
| 429 response | Use Retry-After header |
| Burst limit hit | Add minimum spacing |
| Sustained limit | Queue with concurrency |
| Network timeout | Exponential backoff |
Resources
Next Steps
Proceed to apollo-security-basics for API security best practices.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
