Optimize Apollo.io API performance. Use when improving API response times, reducing latency, or optimizing bulk operations. Trigger with phrases like "apollo performance", "optimize apollo", "apollo slow", "apollo latency", "speed up apollo".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: apollo-performance-tuning description: | Optimize Apollo.io API performance. Use when improving API response times, reducing latency, or optimizing bulk operations. Trigger with phrases like "apollo performance", "optimize apollo", "apollo slow", "apollo latency", "speed up apollo". allowed-tools: Read, Write, Edit, Bash(gh:), Bash(curl:) version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Apollo Performance Tuning
Overview
Optimize Apollo.io API performance through caching, connection pooling, request optimization, and efficient data handling.
Performance Benchmarks
| Operation | Target Latency | Acceptable | Poor |
|---|---|---|---|
| People Search | < 500ms | 500-1500ms | > 1500ms |
| Person Enrichment | < 1000ms | 1-3s | > 3s |
| Org Enrichment | < 800ms | 800ms-2s | > 2s |
| Bulk Operations | < 5s/100 | 5-15s/100 | > 15s/100 |
1. Connection Pooling
// src/lib/apollo/http-agent.ts
import https from 'https';
import { Agent } from 'https';
// Reuse TCP connections
const httpsAgent = new Agent({
keepAlive: true,
keepAliveMsecs: 30000,
maxSockets: 10,
maxFreeSockets: 5,
timeout: 30000,
});
export const apolloClient = axios.create({
baseURL: 'https://api.apollo.io/v1',
httpsAgent,
timeout: 30000,
headers: {
'Connection': 'keep-alive',
},
});
2. Response Caching
// src/lib/apollo/cache.ts
import { LRUCache } from 'lru-cache';
interface CacheEntry<T> {
data: T;
timestamp: number;
}
class ApolloCache {
private cache: LRUCache<string, CacheEntry<any>>;
constructor() {
this.cache = new LRUCache({
max: 1000, // Max entries
ttl: 5 * 60 * 1000, // 5 minutes default
updateAgeOnGet: true,
});
}
generateKey(operation: string, params: any): string {
return `${operation}:${JSON.stringify(params)}`;
}
get<T>(key: string): T | null {
const entry = this.cache.get(key) as CacheEntry<T> | undefined;
return entry?.data || null;
}
set<T>(key: string, data: T, ttlMs?: number): void {
this.cache.set(key, { data, timestamp: Date.now() }, { ttl: ttlMs });
}
invalidate(pattern: string): void {
for (const key of this.cache.keys()) {
if (key.includes(pattern)) {
this.cache.delete(key);
}
}
}
getStats() {
return {
size: this.cache.size,
hitRate: this.cache.calculatedSize,
};
}
}
export const apolloCache = new ApolloCache();
// Cached wrapper
export async function cachedRequest<T>(
key: string,
fetchFn: () => Promise<T>,
ttlMs: number = 300000 // 5 min default
): Promise<T> {
const cached = apolloCache.get<T>(key);
if (cached) {
return cached;
}
const result = await fetchFn();
apolloCache.set(key, result, ttlMs);
return result;
}
Cache Strategy by Endpoint
// src/lib/apollo/cached-client.ts
const CACHE_CONFIG = {
// Long cache - data rarely changes
'organizations/enrich': 24 * 60 * 60 * 1000, // 24 hours
'organizations/search': 60 * 60 * 1000, // 1 hour
// Medium cache - occasional updates
'people/search': 15 * 60 * 1000, // 15 minutes
'people/match': 30 * 60 * 1000, // 30 minutes
// Short cache - frequently updated
'emailer_campaigns': 5 * 60 * 1000, // 5 minutes
// No cache - real-time data
'auth/health': 0,
};
export async function apolloRequest<T>(
endpoint: string,
params: any,
method: 'GET' | 'POST' = 'POST'
): Promise<T> {
const ttl = CACHE_CONFIG[endpoint] || 0;
if (ttl === 0) {
return apollo.request({ method, url: `/${endpoint}`, data: params });
}
const cacheKey = apolloCache.generateKey(endpoint, params);
return cachedRequest(
cacheKey,
() => apollo.request({ method, url: `/${endpoint}`, data: params }),
ttl
);
}
3. Request Optimization
Minimize Payload Size
// Request only needed fields
const optimizedSearch = await apollo.searchPeople({
q_organization_domains: ['stripe.com'],
per_page: 25,
// Only request fields you need
person_seniorities: ['vp', 'director'], // Filter upfront
});
// Transform response immediately to reduce memory
const contacts = response.people.map(p => ({
id: p.id,
name: p.name,
email: p.email,
title: p.title,
// Don't store unused fields
}));
Parallel Requests with Concurrency Limit
// src/lib/apollo/parallel.ts
import pLimit from 'p-limit';
const limit = pLimit(5); // Max 5 concurrent requests
export async function parallelEnrich(domains: string[]): Promise<Organization[]> {
const results = await Promise.all(
domains.map(domain =>
limit(() => apolloRequest('organizations/enrich', { domain }))
)
);
return results.filter(Boolean);
}
Batch Processing
// src/lib/apollo/batch.ts
export async function batchSearch(
criteria: SearchCriteria[],
batchSize: number = 10
): Promise<Person[]> {
const results: Person[] = [];
for (let i = 0; i < criteria.length; i += batchSize) {
const batch = criteria.slice(i, i + batchSize);
// Process batch in parallel
const batchResults = await Promise.all(
batch.map(c => apollo.searchPeople(c))
);
results.push(...batchResults.flatMap(r => r.people));
// Rate limit between batches
if (i + batchSize < criteria.length) {
await new Promise(r => setTimeout(r, 100));
}
}
return results;
}
4. Query Optimization
Use Specific Filters
// BAD: Broad search, then filter client-side
const allPeople = await apollo.searchPeople({
q_organization_domains: ['stripe.com'],
per_page: 100,
});
const engineers = allPeople.people.filter(p =>
p.title?.toLowerCase().includes('engineer')
);
// GOOD: Filter at API level
const engineers = await apollo.searchPeople({
q_organization_domains: ['stripe.com'],
person_titles: ['engineer', 'developer', 'software'],
per_page: 100,
});
Pagination Strategy
// src/lib/apollo/pagination.ts
export async function efficientPagination(
searchParams: any,
maxResults: number = 1000
): Promise<Person[]> {
const results: Person[] = [];
let page = 1;
const perPage = 100; // Max allowed
while (results.length < maxResults) {
const response = await apollo.searchPeople({
...searchParams,
page,
per_page: perPage,
});
results.push(...response.people);
// Stop if no more results
if (response.people.length < perPage) {
break;
}
// Stop if we've reached total
if (page * perPage >= response.pagination.total_entries) {
break;
}
page++;
// Small delay to avoid rate limits
await new Promise(r => setTimeout(r, 50));
}
return results.slice(0, maxResults);
}
5. Performance Monitoring
// src/lib/apollo/metrics.ts
import { Histogram, Counter } from 'prom-client';
const requestDuration = new Histogram({
name: 'apollo_request_duration_seconds',
help: 'Duration of Apollo API requests',
labelNames: ['endpoint', 'status'],
buckets: [0.1, 0.25, 0.5, 1, 2.5, 5, 10],
});
const requestCounter = new Counter({
name: 'apollo_requests_total',
help: 'Total Apollo API requests',
labelNames: ['endpoint', 'status'],
});
const cacheHitCounter = new Counter({
name: 'apollo_cache_hits_total',
help: 'Apollo cache hits',
labelNames: ['endpoint'],
});
export function instrumentedRequest<T>(
endpoint: string,
requestFn: () => Promise<T>
): Promise<T> {
const end = requestDuration.startTimer({ endpoint });
return requestFn()
.then(result => {
end({ status: 'success' });
requestCounter.inc({ endpoint, status: 'success' });
return result;
})
.catch(error => {
end({ status: 'error' });
requestCounter.inc({ endpoint, status: 'error' });
throw error;
});
}
Performance Dashboard Query
// Example Grafana queries
const grafanaQueries = {
avgLatency: 'histogram_quantile(0.95, rate(apollo_request_duration_seconds_bucket[5m]))',
requestRate: 'rate(apollo_requests_total[5m])',
errorRate: 'rate(apollo_requests_total{status="error"}[5m]) / rate(apollo_requests_total[5m])',
cacheHitRate: 'rate(apollo_cache_hits_total[5m]) / rate(apollo_requests_total[5m])',
};
Performance Checklist
- Connection pooling enabled (keep-alive)
- Response caching implemented
- Cache TTLs tuned per endpoint
- Parallel requests with concurrency limit
- Minimal data requested (no unused fields)
- Server-side filtering vs client-side
- Efficient pagination strategy
- Metrics and monitoring enabled
- Performance baseline established
Output
- Connection pooling configuration
- LRU cache with TTL per endpoint
- Parallel request patterns
- Query optimization techniques
- Performance monitoring setup
Error Handling
| Issue | Resolution |
|---|---|
| High latency | Check network, enable caching |
| Cache misses | Tune TTL, check key generation |
| Rate limits | Reduce concurrency, add delays |
| Memory issues | Limit cache size, stream results |
Resources
Next Steps
Proceed to apollo-cost-tuning for cost optimization.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
