Create a minimal working Apollo.io example. Use when starting a new Apollo integration, testing your setup, or learning basic Apollo API patterns. Trigger with phrases like "apollo hello world", "apollo example", "apollo quick start", "simple apollo code", "test apollo api".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: apollo-hello-world description: | Create a minimal working Apollo.io example. Use when starting a new Apollo integration, testing your setup, or learning basic Apollo API patterns. Trigger with phrases like "apollo hello world", "apollo example", "apollo quick start", "simple apollo code", "test apollo api". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io
Apollo Hello World
Overview
Minimal working example demonstrating core Apollo.io functionality - searching for people and enriching contact data.
Prerequisites
- Completed
apollo-install-authsetup - Valid API credentials configured
- Development environment ready
Instructions
Step 1: Create Entry File
Create a new file for your hello world example.
Step 2: Import and Initialize Client
import axios from 'axios';
const apolloClient = axios.create({
baseURL: 'https://api.apollo.io/v1',
headers: { 'Content-Type': 'application/json' },
params: { api_key: process.env.APOLLO_API_KEY },
});
Step 3: Search for People
async function searchPeople() {
const response = await apolloClient.post('/people/search', {
q_organization_domains: ['apollo.io'],
page: 1,
per_page: 10,
});
console.log('Found contacts:', response.data.people.length);
response.data.people.forEach((person: any) => {
console.log(`- ${person.name} (${person.title})`);
});
}
searchPeople().catch(console.error);
Output
- Working code file with Apollo client initialization
- Successful API response with contact data
- Console output showing:
Found contacts: 10
- John Smith (VP of Sales)
- Jane Doe (Account Executive)
...
Error Handling
| Error | Cause | Solution |
|---|---|---|
| 401 Unauthorized | Invalid API key | Check APOLLO_API_KEY environment variable |
| 422 Unprocessable | Invalid request body | Verify request payload format |
| 429 Rate Limited | Too many requests | Wait and retry with exponential backoff |
| Empty Results | No matching contacts | Broaden search criteria |
Examples
TypeScript Example - People Search
import axios from 'axios';
const client = axios.create({
baseURL: 'https://api.apollo.io/v1',
params: { api_key: process.env.APOLLO_API_KEY },
});
interface Person {
id: string;
name: string;
title: string;
email: string;
organization: { name: string };
}
async function main() {
// Search for people at a company
const { data } = await client.post('/people/search', {
q_organization_domains: ['stripe.com'],
person_titles: ['engineer', 'developer'],
page: 1,
per_page: 5,
});
console.log('People Search Results:');
data.people.forEach((person: Person) => {
console.log(` ${person.name} - ${person.title} at ${person.organization?.name}`);
});
}
main().catch(console.error);
Python Example - Company Enrichment
import os
import requests
APOLLO_API_KEY = os.environ.get('APOLLO_API_KEY')
BASE_URL = 'https://api.apollo.io/v1'
def enrich_company(domain: str):
response = requests.get(
f'{BASE_URL}/organizations/enrich',
params={
'api_key': APOLLO_API_KEY,
'domain': domain,
}
)
return response.json()
if __name__ == '__main__':
company = enrich_company('apollo.io')
org = company.get('organization', {})
print(f"Company: {org.get('name')}")
print(f"Industry: {org.get('industry')}")
print(f"Employees: {org.get('estimated_num_employees')}")
Resources
Next Steps
Proceed to apollo-local-dev-loop for development workflow setup.
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
