jeremylongshore

apollo-core-workflow-a

@jeremylongshore/apollo-core-workflow-a
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Implement Apollo.io lead search and enrichment workflow. Use when building lead generation features, searching for contacts, or enriching prospect data from Apollo. Trigger with phrases like "apollo lead search", "search apollo contacts", "find leads in apollo", "apollo people search", "enrich contacts apollo".

Installation

$skills install @jeremylongshore/apollo-core-workflow-a
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/saas-packs/apollo-pack/skills/apollo-core-workflow-a/SKILL.md
Branchmain
Scoped Name@jeremylongshore/apollo-core-workflow-a

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: apollo-core-workflow-a description: | Implement Apollo.io lead search and enrichment workflow. Use when building lead generation features, searching for contacts, or enriching prospect data from Apollo. Trigger with phrases like "apollo lead search", "search apollo contacts", "find leads in apollo", "apollo people search", "enrich contacts apollo". allowed-tools: Read, Write, Edit, Bash(npm:), Bash(pip:), Grep version: 1.0.0 license: MIT author: Jeremy Longshore jeremy@intentsolutions.io

Apollo Core Workflow A: Lead Search & Enrichment

Overview

Implement the primary Apollo.io workflow for searching leads and enriching contact/company data. This is the core use case for B2B sales intelligence.

Prerequisites

  • Completed apollo-sdk-patterns setup
  • Valid Apollo API credentials
  • Understanding of your target market criteria

Workflow Components

1. People Search

Search for contacts based on various criteria like company, title, location, and industry.

// src/services/apollo/people-search.ts
import { apollo } from '../../lib/apollo/client';

interface PeopleSearchCriteria {
  domains?: string[];
  titles?: string[];
  locations?: string[];
  industries?: string[];
  employeeRanges?: string[];
  page?: number;
  perPage?: number;
}

export async function searchPeople(criteria: PeopleSearchCriteria) {
  const response = await apollo.searchPeople({
    q_organization_domains: criteria.domains,
    person_titles: criteria.titles,
    person_locations: criteria.locations,
    q_organization_industry_tag_ids: criteria.industries,
    organization_num_employees_ranges: criteria.employeeRanges,
    page: criteria.page || 1,
    per_page: criteria.perPage || 25,
  });

  return {
    contacts: response.people.map(transformPerson),
    pagination: response.pagination,
  };
}

function transformPerson(person: any) {
  return {
    id: person.id,
    name: person.name,
    firstName: person.first_name,
    lastName: person.last_name,
    title: person.title,
    email: person.email,
    phone: person.phone_numbers?.[0]?.sanitized_number,
    linkedin: person.linkedin_url,
    company: {
      id: person.organization?.id,
      name: person.organization?.name,
      domain: person.organization?.primary_domain,
    },
  };
}

2. Company Enrichment

Enrich company data to get comprehensive firmographic information.

// src/services/apollo/company-enrichment.ts
import { apollo } from '../../lib/apollo/client';

export async function enrichCompany(domain: string) {
  const response = await apollo.enrichOrganization(domain);
  const org = response.organization;

  return {
    id: org.id,
    name: org.name,
    domain: org.primary_domain,
    website: org.website_url,
    industry: org.industry,
    subIndustry: org.sub_industry,
    employeeCount: org.estimated_num_employees,
    annualRevenue: org.annual_revenue,
    founded: org.founded_year,
    description: org.short_description,
    technologies: org.technologies || [],
    locations: {
      headquarters: {
        city: org.city,
        state: org.state,
        country: org.country,
      },
    },
    social: {
      linkedin: org.linkedin_url,
      twitter: org.twitter_url,
      facebook: org.facebook_url,
    },
  };
}

3. Contact Enrichment

Enrich individual contacts with email and additional data.

// src/services/apollo/contact-enrichment.ts
export async function enrichContact(params: {
  email?: string;
  firstName?: string;
  lastName?: string;
  domain?: string;
  linkedinUrl?: string;
}) {
  const response = await apollo.enrichPerson({
    email: params.email,
    first_name: params.firstName,
    last_name: params.lastName,
    organization_domain: params.domain,
    linkedin_url: params.linkedinUrl,
  });

  return {
    ...transformPerson(response.person),
    enrichmentScore: calculateEnrichmentScore(response.person),
  };
}

function calculateEnrichmentScore(person: any): number {
  let score = 0;
  if (person.email) score += 30;
  if (person.phone_numbers?.length) score += 20;
  if (person.linkedin_url) score += 15;
  if (person.title) score += 10;
  if (person.organization) score += 15;
  if (person.city) score += 10;
  return score;
}

4. Complete Lead Generation Pipeline

// src/services/apollo/lead-pipeline.ts
import { searchPeople } from './people-search';
import { enrichCompany } from './company-enrichment';
import { enrichContact } from './contact-enrichment';

interface LeadCriteria {
  targetDomains?: string[];
  targetTitles: string[];
  targetLocations?: string[];
  targetIndustries?: string[];
  minEmployees?: number;
  maxEmployees?: number;
}

export async function generateLeads(criteria: LeadCriteria) {
  // Step 1: Search for matching contacts
  const searchResults = await searchPeople({
    domains: criteria.targetDomains,
    titles: criteria.targetTitles,
    locations: criteria.targetLocations,
    industries: criteria.targetIndustries,
  });

  // Step 2: Enrich companies for each unique domain
  const uniqueDomains = [...new Set(
    searchResults.contacts
      .map(c => c.company.domain)
      .filter(Boolean)
  )];

  const enrichedCompanies = await Promise.all(
    uniqueDomains.slice(0, 10).map(async (domain) => {
      try {
        return await enrichCompany(domain);
      } catch {
        return null;
      }
    })
  );

  const companyMap = new Map(
    enrichedCompanies
      .filter(Boolean)
      .map(c => [c!.domain, c])
  );

  // Step 3: Combine and filter results
  return searchResults.contacts.map(contact => ({
    ...contact,
    company: companyMap.get(contact.company.domain) || contact.company,
  }));
}

Usage Example

// Example: Find engineering leads at fintech companies
const leads = await generateLeads({
  targetTitles: ['VP Engineering', 'CTO', 'Engineering Manager'],
  targetIndustries: ['financial services', 'fintech'],
  minEmployees: 50,
  maxEmployees: 500,
});

console.log(`Found ${leads.length} leads`);
leads.forEach(lead => {
  console.log(`${lead.name} - ${lead.title} at ${lead.company.name}`);
});

Output

  • Paginated people search results
  • Enriched company firmographic data
  • Enriched contact data with emails
  • Combined lead pipeline with scoring

Error Handling

ErrorCauseSolution
Empty ResultsToo narrow criteriaBroaden search parameters
Missing EmailsContact not in databaseTry LinkedIn enrichment
Rate LimitedToo many enrichment callsImplement batching
Invalid DomainDomain doesn't existValidate domains first

Resources

Next Steps

Proceed to apollo-core-workflow-b for email sequences and outreach.

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.