jeremylongshore

analyzing-mempool

@jeremylongshore/analyzing-mempool
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Monitor blockchain mempools for pending transactions, gas analysis, and MEV opportunities. Use when analyzing pending transactions, optimizing gas prices, or researching MEV. Trigger with phrases like "check mempool", "scan pending txs", "find MEV", "gas price analysis", or "pending swaps".

Installation

$skills install @jeremylongshore/analyzing-mempool
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/crypto/mempool-analyzer/skills/analyzing-mempool/SKILL.md
Branchmain
Scoped Name@jeremylongshore/analyzing-mempool

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: analyzing-mempool description: | Monitor blockchain mempools for pending transactions, gas analysis, and MEV opportunities. Use when analyzing pending transactions, optimizing gas prices, or researching MEV. Trigger with phrases like "check mempool", "scan pending txs", "find MEV", "gas price analysis", or "pending swaps".

allowed-tools: Read, Write, Edit, Grep, Glob, Bash(pythonmempool) version: 1.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT

Analyzing Mempool

Overview

Monitor Ethereum mempool for pending transactions, analyze gas prices, detect DEX swaps, and identify potential MEV opportunities. Useful for traders, MEV researchers, and protocol developers.

Prerequisites

Before using this skill, ensure you have:

  • Python 3.8+ with requests library
  • Ethereum RPC URL (default: public endpoint, or set ETH_RPC_URL)
  • Internet access for RPC calls

Instructions

Step 1: Navigate to Scripts Directory

cd {baseDir}/scripts

Step 2: Choose Your Command

View Pending Transactions:

python mempool_analyzer.py pending
python mempool_analyzer.py pending --limit 100

Gas Price Analysis:

python mempool_analyzer.py gas
# Shows distribution, recommendations for slow/standard/fast/instant

Pending DEX Swaps:

python mempool_analyzer.py swaps
# Detects Uniswap, SushiSwap, 1inch pending swaps

MEV Opportunity Scan:

python mempool_analyzer.py mev
# Detects sandwich, arbitrage, liquidation opportunities

Mempool Summary:

python mempool_analyzer.py summary
# Quick overview of pending count, gas, opportunities

Watch Specific Contract:

python mempool_analyzer.py watch 0x7a250d...
# Monitor pending transactions to specific contract

Step 3: Interpret Results

Gas Recommendations:

  • Slow (10th percentile): May take 10+ blocks
  • Standard (50th percentile): 2-5 blocks
  • Fast (75th percentile): 1-2 blocks
  • Instant (90th percentile): Next block likely

MEV Warnings:

  • MEV detection is for educational purposes
  • Real MEV extraction requires specialized infrastructure
  • Use this for research and understanding mempool dynamics

Output

  • Pending transaction lists with gas prices and types
  • Gas price distribution and recommendations
  • Detected DEX swaps with amounts and DEX identification
  • MEV opportunity analysis with estimated profits
  • JSON output for programmatic use

Error Handling

See {baseDir}/references/errors.md for:

  • RPC connection issues
  • Mempool access limitations
  • Transaction decoding errors
  • Gas analysis fallbacks

Examples

Check gas before sending transaction:

python mempool_analyzer.py gas
# Use "Fast" for quick confirmation

Monitor for large pending swaps:

python mempool_analyzer.py swaps --limit 200

Research MEV opportunities:

python mempool_analyzer.py mev -v

Use different chain:

python mempool_analyzer.py --chain polygon gas
python mempool_analyzer.py --chain arbitrum pending

See {baseDir}/references/examples.md for more usage patterns.

Resources

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.