jeremylongshore

analyzing-liquidity-pools

@jeremylongshore/analyzing-liquidity-pools
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

Analyze DEX liquidity pools for TVL, volume, fees, impermanent loss, and LP profitability. Use when analyzing liquidity pools, calculating impermanent loss, or comparing DEX pools. Trigger with phrases like "analyze liquidity pool", "calculate impermanent loss", "LP returns", "pool TVL", "DEX pool metrics", or "compare pools".

Installation

$skills install @jeremylongshore/analyzing-liquidity-pools
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathplugins/crypto/liquidity-pool-analyzer/skills/analyzing-liquidity-pools/SKILL.md
Branchmain
Scoped Name@jeremylongshore/analyzing-liquidity-pools

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: analyzing-liquidity-pools description: | Analyze DEX liquidity pools for TVL, volume, fees, impermanent loss, and LP profitability. Use when analyzing liquidity pools, calculating impermanent loss, or comparing DEX pools. Trigger with phrases like "analyze liquidity pool", "calculate impermanent loss", "LP returns", "pool TVL", "DEX pool metrics", or "compare pools".

allowed-tools: Read, Write, Bash(crypto:liquidity-*) version: 2.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT

Analyzing Liquidity Pools

Overview

Analyze DEX liquidity pools to understand TVL, trading volume, fee income, and impermanent loss risk. Compare pools across protocols (Uniswap, Curve, Balancer) and chains to identify optimal LP opportunities.

Prerequisites

Before using this skill, ensure you have:

  • Python 3.8+ installed
  • Internet access for subgraph/API queries
  • Understanding of liquidity providing concepts (IL, fee tiers, TVL)

Instructions

Step 1: Analyze a Specific Pool

Analyze pool by address:

python {baseDir}/scripts/pool_analyzer.py --pool 0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640

Analyze by token pair:

python {baseDir}/scripts/pool_analyzer.py --pair ETH/USDC --protocol uniswap-v3

Step 2: Calculate Impermanent Loss

Calculate IL for a price change:

python {baseDir}/scripts/pool_analyzer.py --il-calc --entry-price 2000 --current-price 3000

Project IL for various scenarios:

python {baseDir}/scripts/pool_analyzer.py --il-scenarios --token-pair ETH/USDC

Step 3: Estimate LP Returns

Calculate fee APR:

python {baseDir}/scripts/pool_analyzer.py --pool [address] --detailed

Project returns for position size:

python {baseDir}/scripts/pool_analyzer.py --pool [address] --position 10000

Step 4: Compare Pools

Compare same pair across protocols:

python {baseDir}/scripts/pool_analyzer.py --compare --pair ETH/USDC --protocols uniswap-v3,curve,balancer

Compare fee tiers:

python {baseDir}/scripts/pool_analyzer.py --compare --pair ETH/USDC --fee-tiers 0.05,0.30,1.00

Step 5: Export Results

Export to JSON:

python {baseDir}/scripts/pool_analyzer.py --pool [address] --format json --output pool_analysis.json

Export comparison to CSV:

python {baseDir}/scripts/pool_analyzer.py --compare --pair ETH/USDC --format csv --output pools.csv

Output

Pool Analysis Summary

==============================================================================
  LIQUIDITY POOL ANALYZER                           2026-01-15 15:30 UTC
==============================================================================

  POOL: USDC/WETH (Uniswap V3 - 0.05%)
------------------------------------------------------------------------------
  Chain:          Ethereum
  TVL:            $500.5M
  24h Volume:     $125.3M
  Fee Tier:       0.05%

  FEE METRICS
------------------------------------------------------------------------------
  24h Fees:       $62,650
  Fee APR:        4.57%
  Volume/TVL:     0.25

  TOKEN COMPOSITION
------------------------------------------------------------------------------
  USDC:           $252.1M (50.4%)
  WETH:           $248.4M (49.6%)
  Current Price:  $2,450/ETH
==============================================================================

Impermanent Loss Report

  IMPERMANENT LOSS CALCULATION
------------------------------------------------------------------------------
  Entry Price:    $2,000/ETH
  Current Price:  $3,000/ETH
  Price Change:   +50%

  IL (%)          -5.72%
  IL ($1000 LP):  -$57.20

  Value if HODL:  $1,250.00
  Value in LP:    $1,192.80

  BREAKEVEN ANALYSIS (0.05% fee tier)
------------------------------------------------------------------------------
  Daily Fees:     $0.63 (at $500M TVL, $125M vol)
  Days to Break:  91 days
  Monthly Fees:   $18.90
==============================================================================

Error Handling

See {baseDir}/references/errors.md for comprehensive error handling.

Common issues:

  • Pool not found: Verify address and chain
  • Subgraph timeout: Uses cached data with warning
  • Invalid pair: Check supported protocols

Examples

See {baseDir}/references/examples.md for detailed usage examples.

Quick Examples

Analyze top ETH/USDC pool:

python pool_analyzer.py --pair ETH/USDC --protocol uniswap-v3 --chain ethereum

Calculate IL for 2x price increase:

python pool_analyzer.py --il-calc --entry-price 100 --current-price 200

Compare Uniswap fee tiers:

python pool_analyzer.py --compare --pair ETH/USDC --fee-tiers 0.05,0.30,1.00

Export all ETH pairs:

python pool_analyzer.py --token ETH --format json --output eth_pools.json

Configuration

Settings in {baseDir}/config/settings.yaml:

  • Default chain: Primary chain to query
  • Cache TTL: How long to cache subgraph data
  • Subgraph endpoints: URLs for each protocol
  • Fee tier defaults: Common fee tier options

Resources

More by jeremylongshore

View all
rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").

oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.