Analyze DEX liquidity pools for TVL, volume, fees, impermanent loss, and LP profitability. Use when analyzing liquidity pools, calculating impermanent loss, or comparing DEX pools. Trigger with phrases like "analyze liquidity pool", "calculate impermanent loss", "LP returns", "pool TVL", "DEX pool metrics", or "compare pools".
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: analyzing-liquidity-pools description: | Analyze DEX liquidity pools for TVL, volume, fees, impermanent loss, and LP profitability. Use when analyzing liquidity pools, calculating impermanent loss, or comparing DEX pools. Trigger with phrases like "analyze liquidity pool", "calculate impermanent loss", "LP returns", "pool TVL", "DEX pool metrics", or "compare pools".
allowed-tools: Read, Write, Bash(crypto:liquidity-*) version: 2.0.0 author: Jeremy Longshore jeremy@intentsolutions.io license: MIT
Analyzing Liquidity Pools
Overview
Analyze DEX liquidity pools to understand TVL, trading volume, fee income, and impermanent loss risk. Compare pools across protocols (Uniswap, Curve, Balancer) and chains to identify optimal LP opportunities.
Prerequisites
Before using this skill, ensure you have:
- Python 3.8+ installed
- Internet access for subgraph/API queries
- Understanding of liquidity providing concepts (IL, fee tiers, TVL)
Instructions
Step 1: Analyze a Specific Pool
Analyze pool by address:
python {baseDir}/scripts/pool_analyzer.py --pool 0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640
Analyze by token pair:
python {baseDir}/scripts/pool_analyzer.py --pair ETH/USDC --protocol uniswap-v3
Step 2: Calculate Impermanent Loss
Calculate IL for a price change:
python {baseDir}/scripts/pool_analyzer.py --il-calc --entry-price 2000 --current-price 3000
Project IL for various scenarios:
python {baseDir}/scripts/pool_analyzer.py --il-scenarios --token-pair ETH/USDC
Step 3: Estimate LP Returns
Calculate fee APR:
python {baseDir}/scripts/pool_analyzer.py --pool [address] --detailed
Project returns for position size:
python {baseDir}/scripts/pool_analyzer.py --pool [address] --position 10000
Step 4: Compare Pools
Compare same pair across protocols:
python {baseDir}/scripts/pool_analyzer.py --compare --pair ETH/USDC --protocols uniswap-v3,curve,balancer
Compare fee tiers:
python {baseDir}/scripts/pool_analyzer.py --compare --pair ETH/USDC --fee-tiers 0.05,0.30,1.00
Step 5: Export Results
Export to JSON:
python {baseDir}/scripts/pool_analyzer.py --pool [address] --format json --output pool_analysis.json
Export comparison to CSV:
python {baseDir}/scripts/pool_analyzer.py --compare --pair ETH/USDC --format csv --output pools.csv
Output
Pool Analysis Summary
==============================================================================
LIQUIDITY POOL ANALYZER 2026-01-15 15:30 UTC
==============================================================================
POOL: USDC/WETH (Uniswap V3 - 0.05%)
------------------------------------------------------------------------------
Chain: Ethereum
TVL: $500.5M
24h Volume: $125.3M
Fee Tier: 0.05%
FEE METRICS
------------------------------------------------------------------------------
24h Fees: $62,650
Fee APR: 4.57%
Volume/TVL: 0.25
TOKEN COMPOSITION
------------------------------------------------------------------------------
USDC: $252.1M (50.4%)
WETH: $248.4M (49.6%)
Current Price: $2,450/ETH
==============================================================================
Impermanent Loss Report
IMPERMANENT LOSS CALCULATION
------------------------------------------------------------------------------
Entry Price: $2,000/ETH
Current Price: $3,000/ETH
Price Change: +50%
IL (%) -5.72%
IL ($1000 LP): -$57.20
Value if HODL: $1,250.00
Value in LP: $1,192.80
BREAKEVEN ANALYSIS (0.05% fee tier)
------------------------------------------------------------------------------
Daily Fees: $0.63 (at $500M TVL, $125M vol)
Days to Break: 91 days
Monthly Fees: $18.90
==============================================================================
Error Handling
See {baseDir}/references/errors.md for comprehensive error handling.
Common issues:
- Pool not found: Verify address and chain
- Subgraph timeout: Uses cached data with warning
- Invalid pair: Check supported protocols
Examples
See {baseDir}/references/examples.md for detailed usage examples.
Quick Examples
Analyze top ETH/USDC pool:
python pool_analyzer.py --pair ETH/USDC --protocol uniswap-v3 --chain ethereum
Calculate IL for 2x price increase:
python pool_analyzer.py --il-calc --entry-price 100 --current-price 200
Compare Uniswap fee tiers:
python pool_analyzer.py --compare --pair ETH/USDC --fee-tiers 0.05,0.30,1.00
Export all ETH pairs:
python pool_analyzer.py --token ETH --format json --output eth_pools.json
Configuration
Settings in {baseDir}/config/settings.yaml:
- Default chain: Primary chain to query
- Cache TTL: How long to cache subgraph data
- Subgraph endpoints: URLs for each protocol
- Fee tier defaults: Common fee tier options
Resources
- The Graph: https://thegraph.com/ - Subgraph queries
- Uniswap Info: https://info.uniswap.org/ - Pool explorer
- DeFiLlama: https://defillama.com/ - TVL data
- Impermanent Loss Calculator: https://dailydefi.org/tools/impermanent-loss-calculator/
More by jeremylongshore
View allRabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.
evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".
building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").
Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.
