jeremylongshore

Engineering Features for Machine Learning

@jeremylongshore/Engineering Features for Machine Learning
jeremylongshore
1,004
123 forks
Updated 1/18/2026
View on GitHub

This skill empowers Claude to perform feature engineering tasks for machine learning. It creates, selects, and transforms features to improve model performance. Use this skill when the user requests feature creation, feature selection, feature transformation, or any request that involves improving the features used in a machine learning model. Trigger terms include "feature engineering", "feature selection", "feature transformation", "create features", "select features", "transform features", "improve model performance", and similar phrases related to feature manipulation.

Installation

$skills install @jeremylongshore/Engineering Features for Machine Learning
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathbackups/plugin-enhancements/plugin-backups/feature-engineering-toolkit_20251019_182437/skills/skill-adapter/SKILL.md
Branchmain
Scoped Name@jeremylongshore/Engineering Features for Machine Learning

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: Engineering Features for Machine Learning description: | This skill empowers Claude to perform feature engineering tasks for machine learning. It creates, selects, and transforms features to improve model performance. Use this skill when the user requests feature creation, feature selection, feature transformation, or any request that involves improving the features used in a machine learning model. Trigger terms include "feature engineering", "feature selection", "feature transformation", "create features", "select features", "transform features", "improve model performance", and similar phrases related to feature manipulation.

Overview

This skill enables Claude to leverage the feature-engineering-toolkit plugin to enhance machine learning models. It automates the process of creating new features, selecting the most relevant ones, and transforming existing features to better suit the model's needs. By using this skill, you can improve the accuracy, efficiency, and interpretability of your machine learning models.

How It Works

  1. Analyzing Requirements: Claude analyzes the user's request and identifies the specific feature engineering task required.
  2. Generating Code: Claude generates Python code using the feature-engineering-toolkit plugin to perform the requested task. This includes data validation and error handling.
  3. Executing Task: The generated code is executed, creating, selecting, or transforming features as requested.
  4. Providing Insights: Claude provides performance metrics and insights related to the feature engineering process, such as the importance of newly created features or the impact of transformations on model performance.

When to Use This Skill

This skill activates when you need to:

  • Create new features from existing data to improve model accuracy.
  • Select the most relevant features from a dataset to reduce model complexity and improve efficiency.
  • Transform features to better suit the assumptions of a machine learning model (e.g., scaling, normalization, encoding).

Examples

Example 1: Improving Model Accuracy

User request: "Create new features from the existing 'age' and 'income' columns to improve the accuracy of a customer churn prediction model."

The skill will:

  1. Generate code to create interaction terms between 'age' and 'income' (e.g., age * income, age / income).
  2. Execute the code and evaluate the impact of the new features on model performance.

Example 2: Reducing Model Complexity

User request: "Select the top 10 most important features from the dataset to reduce the complexity of a fraud detection model."

The skill will:

  1. Generate code to calculate feature importance using a suitable method (e.g., Random Forest, SelectKBest).
  2. Execute the code and select the top 10 features based on their importance scores.

Best Practices

  • Data Validation: Always validate the input data to ensure it is clean and consistent before performing feature engineering.
  • Feature Scaling: Scale numerical features to prevent features with larger ranges from dominating the model.
  • Encoding Categorical Features: Encode categorical features appropriately (e.g., one-hot encoding, label encoding) to make them suitable for machine learning models.

Integration

This skill integrates with the feature-engineering-toolkit plugin, providing a seamless way to create, select, and transform features for machine learning models. It can be used in conjunction with other Claude Code skills to build complete machine learning pipelines.

More by jeremylongshore

View all
oauth-callback-handler
1,004

Oauth Callback Handler - Auto-activating skill for API Integration. Triggers on: oauth callback handler, oauth callback handler Part of the API Integration skill category.

rabbitmq-queue-setup
1,004

Rabbitmq Queue Setup - Auto-activating skill for Backend Development. Triggers on: rabbitmq queue setup, rabbitmq queue setup Part of the Backend Development skill category.

model-evaluation-suite
1,004

evaluating-machine-learning-models: This skill allows Claude to evaluate machine learning models using a comprehensive suite of metrics. It should be used when the user requests model performance analysis, validation, or testing. Claude can use this skill to assess model accuracy, precision, recall, F1-score, and other relevant metrics. Trigger this skill when the user mentions "evaluate model", "model performance", "testing metrics", "validation results", or requests a comprehensive "model evaluation".

neural-network-builder
1,004

building-neural-networks: This skill allows Claude to construct and configure neural network architectures using the neural-network-builder plugin. It should be used when the user requests the creation of a new neural network, modification of an existing one, or assistance with defining the layers, parameters, and training process. The skill is triggered by requests involving terms like "build a neural network," "define network architecture," "configure layers," or specific mentions of neural network types (e.g., "CNN," "RNN," "transformer").