Provides guidance for mechanistic interpretability research using TransformerLens to inspect and manipulate transformer internals via HookPoints and activation caching. Use when reverse-engineering model algorithms, studying attention patterns, or performing activation patching experiments.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: transformer-lens-interpretability description: Provides guidance for mechanistic interpretability research using TransformerLens to inspect and manipulate transformer internals via HookPoints and activation caching. Use when reverse-engineering model algorithms, studying attention patterns, or performing activation patching experiments. version: 1.0.0 author: Orchestra Research license: MIT tags: [Mechanistic Interpretability, TransformerLens, Activation Patching, Circuit Analysis] dependencies: [transformer-lens>=2.0.0, torch>=2.0.0]
TransformerLens: Mechanistic Interpretability for Transformers
TransformerLens is the de facto standard library for mechanistic interpretability research on GPT-style language models. Created by Neel Nanda and maintained by Bryce Meyer, it provides clean interfaces to inspect and manipulate model internals via HookPoints on every activation.
GitHub: TransformerLensOrg/TransformerLens (2,900+ stars)
When to Use TransformerLens
Use TransformerLens when you need to:
- Reverse-engineer algorithms learned during training
- Perform activation patching / causal tracing experiments
- Study attention patterns and information flow
- Analyze circuits (e.g., induction heads, IOI circuit)
- Cache and inspect intermediate activations
- Apply direct logit attribution
Consider alternatives when:
- You need to work with non-transformer architectures → Use nnsight or pyvene
- You want to train/analyze Sparse Autoencoders → Use SAELens
- You need remote execution on massive models → Use nnsight with NDIF
- You want higher-level causal intervention abstractions → Use pyvene
Installation
pip install transformer-lens
For development version:
pip install git+https://github.com/TransformerLensOrg/TransformerLens
Core Concepts
HookedTransformer
The main class that wraps transformer models with HookPoints on every activation:
from transformer_lens import HookedTransformer
# Load a model
model = HookedTransformer.from_pretrained("gpt2-small")
# For gated models (LLaMA, Mistral)
import os
os.environ["HF_TOKEN"] = "your_token"
model = HookedTransformer.from_pretrained("meta-llama/Llama-2-7b-hf")
Supported Models (50+)
| Family | Models |
|---|---|
| GPT-2 | gpt2, gpt2-medium, gpt2-large, gpt2-xl |
| LLaMA | llama-7b, llama-13b, llama-2-7b, llama-2-13b |
| EleutherAI | pythia-70m to pythia-12b, gpt-neo, gpt-j-6b |
| Mistral | mistral-7b, mixtral-8x7b |
| Others | phi, qwen, opt, gemma |
Activation Caching
Run the model and cache all intermediate activations:
# Get all activations
tokens = model.to_tokens("The Eiffel Tower is in")
logits, cache = model.run_with_cache(tokens)
# Access specific activations
residual = cache["resid_post", 5] # Layer 5 residual stream
attn_pattern = cache["pattern", 3] # Layer 3 attention pattern
mlp_out = cache["mlp_out", 7] # Layer 7 MLP output
# Filter which activations to cache (saves memory)
logits, cache = model.run_with_cache(
tokens,
names_filter=lambda name: "resid_post" in name
)
ActivationCache Keys
| Key Pattern | Shape | Description |
|---|---|---|
resid_pre, layer | [batch, pos, d_model] | Residual before attention |
resid_mid, layer | [batch, pos, d_model] | Residual after attention |
resid_post, layer | [batch, pos, d_model] | Residual after MLP |
attn_out, layer | [batch, pos, d_model] | Attention output |
mlp_out, layer | [batch, pos, d_model] | MLP output |
pattern, layer | [batch, head, q_pos, k_pos] | Attention pattern (post-softmax) |
q, layer | [batch, pos, head, d_head] | Query vectors |
k, layer | [batch, pos, head, d_head] | Key vectors |
v, layer | [batch, pos, head, d_head] | Value vectors |
Workflow 1: Activation Patching (Causal Tracing)
Identify which activations causally affect model output by patching clean activations into corrupted runs.
Step-by-Step
from transformer_lens import HookedTransformer, patching
import torch
model = HookedTransformer.from_pretrained("gpt2-small")
# 1. Define clean and corrupted prompts
clean_prompt = "The Eiffel Tower is in the city of"
corrupted_prompt = "The Colosseum is in the city of"
clean_tokens = model.to_tokens(clean_prompt)
corrupted_tokens = model.to_tokens(corrupted_prompt)
# 2. Get clean activations
_, clean_cache = model.run_with_cache(clean_tokens)
# 3. Define metric (e.g., logit difference)
paris_token = model.to_single_token(" Paris")
rome_token = model.to_single_token(" Rome")
def metric(logits):
return logits[0, -1, paris_token] - logits[0, -1, rome_token]
# 4. Patch each position and layer
results = torch.zeros(model.cfg.n_layers, clean_tokens.shape[1])
for layer in range(model.cfg.n_layers):
for pos in range(clean_tokens.shape[1]):
def patch_hook(activation, hook):
activation[0, pos] = clean_cache[hook.name][0, pos]
return activation
patched_logits = model.run_with_hooks(
corrupted_tokens,
fwd_hooks=[(f"blocks.{layer}.hook_resid_post", patch_hook)]
)
results[layer, pos] = metric(patched_logits)
# 5. Visualize results (layer x position heatmap)
Checklist
- Define clean and corrupted inputs that differ minimally
- Choose metric that captures behavior difference
- Cache clean activations
- Systematically patch each (layer, position) combination
- Visualize results as heatmap
- Identify causal hotspots
Workflow 2: Circuit Analysis (Indirect Object Identification)
Replicate the IOI circuit discovery from "Interpretability in the Wild".
Step-by-Step
from transformer_lens import HookedTransformer
import torch
model = HookedTransformer.from_pretrained("gpt2-small")
# IOI task: "When John and Mary went to the store, Mary gave a bottle to"
# Model should predict "John" (indirect object)
prompt = "When John and Mary went to the store, Mary gave a bottle to"
tokens = model.to_tokens(prompt)
# 1. Get baseline logits
logits, cache = model.run_with_cache(tokens)
john_token = model.to_single_token(" John")
mary_token = model.to_single_token(" Mary")
# 2. Compute logit difference (IO - S)
logit_diff = logits[0, -1, john_token] - logits[0, -1, mary_token]
print(f"Logit difference: {logit_diff.item():.3f}")
# 3. Direct logit attribution by head
def get_head_contribution(layer, head):
# Project head output to logits
head_out = cache["z", layer][0, :, head, :] # [pos, d_head]
W_O = model.W_O[layer, head] # [d_head, d_model]
W_U = model.W_U # [d_model, vocab]
# Head contribution to logits at final position
contribution = head_out[-1] @ W_O @ W_U
return contribution[john_token] - contribution[mary_token]
# 4. Map all heads
head_contributions = torch.zeros(model.cfg.n_layers, model.cfg.n_heads)
for layer in range(model.cfg.n_layers):
for head in range(model.cfg.n_heads):
head_contributions[layer, head] = get_head_contribution(layer, head)
# 5. Identify top contributing heads (name movers, backup name movers)
Checklist
- Set up task with clear IO/S tokens
- Compute baseline logit difference
- Decompose by attention head contributions
- Identify key circuit components (name movers, S-inhibition, induction)
- Validate with ablation experiments
Workflow 3: Induction Head Detection
Find induction heads that implement [A][B]...[A] → [B] pattern.
from transformer_lens import HookedTransformer
import torch
model = HookedTransformer.from_pretrained("gpt2-small")
# Create repeated sequence: [A][B][A] should predict [B]
repeated_tokens = torch.tensor([[1000, 2000, 1000]]) # Arbitrary tokens
_, cache = model.run_with_cache(repeated_tokens)
# Induction heads attend from final [A] back to first [B]
# Check attention from position 2 to position 1
induction_scores = torch.zeros(model.cfg.n_layers, model.cfg.n_heads)
for layer in range(model.cfg.n_layers):
pattern = cache["pattern", layer][0] # [head, q_pos, k_pos]
# Attention from pos 2 to pos 1
induction_scores[layer] = pattern[:, 2, 1]
# Heads with high scores are induction heads
top_heads = torch.topk(induction_scores.flatten(), k=5)
Common Issues & Solutions
Issue: Hooks persist after debugging
# WRONG: Old hooks remain active
model.run_with_hooks(tokens, fwd_hooks=[...]) # Debug, add new hooks
model.run_with_hooks(tokens, fwd_hooks=[...]) # Old hooks still there!
# RIGHT: Always reset hooks
model.reset_hooks()
model.run_with_hooks(tokens, fwd_hooks=[...])
Issue: Tokenization gotchas
# WRONG: Assuming consistent tokenization
model.to_tokens("Tim") # Single token
model.to_tokens("Neel") # Becomes "Ne" + "el" (two tokens!)
# RIGHT: Check tokenization explicitly
tokens = model.to_tokens("Neel", prepend_bos=False)
print(model.to_str_tokens(tokens)) # ['Ne', 'el']
Issue: LayerNorm ignored in analysis
# WRONG: Ignoring LayerNorm
pre_activation = residual @ model.W_in[layer]
# RIGHT: Include LayerNorm
ln_scale = model.blocks[layer].ln2.w
ln_out = model.blocks[layer].ln2(residual)
pre_activation = ln_out @ model.W_in[layer]
Issue: Memory explosion with large models
# Use selective caching
logits, cache = model.run_with_cache(
tokens,
names_filter=lambda n: "resid_post" in n or "pattern" in n,
device="cpu" # Cache on CPU
)
Key Classes Reference
| Class | Purpose |
|---|---|
HookedTransformer | Main model wrapper with hooks |
ActivationCache | Dictionary-like cache of activations |
HookedTransformerConfig | Model configuration |
FactoredMatrix | Efficient factored matrix operations |
Integration with SAELens
TransformerLens integrates with SAELens for Sparse Autoencoder analysis:
from transformer_lens import HookedTransformer
from sae_lens import SAE
model = HookedTransformer.from_pretrained("gpt2-small")
sae = SAE.from_pretrained("gpt2-small-res-jb", "blocks.8.hook_resid_pre")
# Run with SAE
tokens = model.to_tokens("Hello world")
_, cache = model.run_with_cache(tokens)
sae_acts = sae.encode(cache["resid_pre", 8])
Reference Documentation
For detailed API documentation, tutorials, and advanced usage, see the references/ folder:
| File | Contents |
|---|---|
| references/README.md | Overview and quick start guide |
| references/api.md | Complete API reference for HookedTransformer, ActivationCache, HookPoints |
| references/tutorials.md | Step-by-step tutorials for activation patching, circuit analysis, logit lens |
External Resources
Tutorials
- Main Demo Notebook
- Activation Patching Demo
- ARENA Mech Interp Course - 200+ hours of tutorials
Papers
- A Mathematical Framework for Transformer Circuits
- In-context Learning and Induction Heads
- Interpretability in the Wild (IOI)
Official Documentation
Version Notes
- v2.0: Removed HookedSAE (moved to SAELens)
- v3.0 (alpha): TransformerBridge for loading any nn.Module
More by davila7
View allAgile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
