Optimizes LLM inference with NVIDIA TensorRT for maximum throughput and lowest latency. Use for production deployment on NVIDIA GPUs (A100/H100), when you need 10-100x faster inference than PyTorch, or for serving models with quantization (FP8/INT4), in-flight batching, and multi-GPU scaling.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: tensorrt-llm description: Optimizes LLM inference with NVIDIA TensorRT for maximum throughput and lowest latency. Use for production deployment on NVIDIA GPUs (A100/H100), when you need 10-100x faster inference than PyTorch, or for serving models with quantization (FP8/INT4), in-flight batching, and multi-GPU scaling. version: 1.0.0 author: Orchestra Research license: MIT tags: [Inference Serving, TensorRT-LLM, NVIDIA, Inference Optimization, High Throughput, Low Latency, Production, FP8, INT4, In-Flight Batching, Multi-GPU] dependencies: [tensorrt-llm, torch]
TensorRT-LLM
NVIDIA's open-source library for optimizing LLM inference with state-of-the-art performance on NVIDIA GPUs.
When to use TensorRT-LLM
Use TensorRT-LLM when:
- Deploying on NVIDIA GPUs (A100, H100, GB200)
- Need maximum throughput (24,000+ tokens/sec on Llama 3)
- Require low latency for real-time applications
- Working with quantized models (FP8, INT4, FP4)
- Scaling across multiple GPUs or nodes
Use vLLM instead when:
- Need simpler setup and Python-first API
- Want PagedAttention without TensorRT compilation
- Working with AMD GPUs or non-NVIDIA hardware
Use llama.cpp instead when:
- Deploying on CPU or Apple Silicon
- Need edge deployment without NVIDIA GPUs
- Want simpler GGUF quantization format
Quick start
Installation
# Docker (recommended)
docker pull nvidia/tensorrt_llm:latest
# pip install
pip install tensorrt_llm==1.2.0rc3
# Requires CUDA 13.0.0, TensorRT 10.13.2, Python 3.10-3.12
Basic inference
from tensorrt_llm import LLM, SamplingParams
# Initialize model
llm = LLM(model="meta-llama/Meta-Llama-3-8B")
# Configure sampling
sampling_params = SamplingParams(
max_tokens=100,
temperature=0.7,
top_p=0.9
)
# Generate
prompts = ["Explain quantum computing"]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
print(output.text)
Serving with trtllm-serve
# Start server (automatic model download and compilation)
trtllm-serve meta-llama/Meta-Llama-3-8B \
--tp_size 4 \ # Tensor parallelism (4 GPUs)
--max_batch_size 256 \
--max_num_tokens 4096
# Client request
curl -X POST http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Meta-Llama-3-8B",
"messages": [{"role": "user", "content": "Hello!"}],
"temperature": 0.7,
"max_tokens": 100
}'
Key features
Performance optimizations
- In-flight batching: Dynamic batching during generation
- Paged KV cache: Efficient memory management
- Flash Attention: Optimized attention kernels
- Quantization: FP8, INT4, FP4 for 2-4× faster inference
- CUDA graphs: Reduced kernel launch overhead
Parallelism
- Tensor parallelism (TP): Split model across GPUs
- Pipeline parallelism (PP): Layer-wise distribution
- Expert parallelism: For Mixture-of-Experts models
- Multi-node: Scale beyond single machine
Advanced features
- Speculative decoding: Faster generation with draft models
- LoRA serving: Efficient multi-adapter deployment
- Disaggregated serving: Separate prefill and generation
Common patterns
Quantized model (FP8)
from tensorrt_llm import LLM
# Load FP8 quantized model (2× faster, 50% memory)
llm = LLM(
model="meta-llama/Meta-Llama-3-70B",
dtype="fp8",
max_num_tokens=8192
)
# Inference same as before
outputs = llm.generate(["Summarize this article..."])
Multi-GPU deployment
# Tensor parallelism across 8 GPUs
llm = LLM(
model="meta-llama/Meta-Llama-3-405B",
tensor_parallel_size=8,
dtype="fp8"
)
Batch inference
# Process 100 prompts efficiently
prompts = [f"Question {i}: ..." for i in range(100)]
outputs = llm.generate(
prompts,
sampling_params=SamplingParams(max_tokens=200)
)
# Automatic in-flight batching for maximum throughput
Performance benchmarks
Meta Llama 3-8B (H100 GPU):
- Throughput: 24,000 tokens/sec
- Latency: ~10ms per token
- vs PyTorch: 100× faster
Llama 3-70B (8× A100 80GB):
- FP8 quantization: 2× faster than FP16
- Memory: 50% reduction with FP8
Supported models
- LLaMA family: Llama 2, Llama 3, CodeLlama
- GPT family: GPT-2, GPT-J, GPT-NeoX
- Qwen: Qwen, Qwen2, QwQ
- DeepSeek: DeepSeek-V2, DeepSeek-V3
- Mixtral: Mixtral-8x7B, Mixtral-8x22B
- Vision: LLaVA, Phi-3-vision
- 100+ models on HuggingFace
References
- Optimization Guide - Quantization, batching, KV cache tuning
- Multi-GPU Setup - Tensor/pipeline parallelism, multi-node
- Serving Guide - Production deployment, monitoring, autoscaling
Resources
More by davila7
View allAgile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
