High-level PyTorch framework with Trainer class, automatic distributed training (DDP/FSDP/DeepSpeed), callbacks system, and minimal boilerplate. Scales from laptop to supercomputer with same code. Use when you want clean training loops with built-in best practices.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: pytorch-lightning description: High-level PyTorch framework with Trainer class, automatic distributed training (DDP/FSDP/DeepSpeed), callbacks system, and minimal boilerplate. Scales from laptop to supercomputer with same code. Use when you want clean training loops with built-in best practices. version: 1.0.0 author: Orchestra Research license: MIT tags: [PyTorch Lightning, Training Framework, Distributed Training, DDP, FSDP, DeepSpeed, High-Level API, Callbacks, Best Practices, Scalable] dependencies: [lightning, torch, transformers]
PyTorch Lightning - High-Level Training Framework
Quick start
PyTorch Lightning organizes PyTorch code to eliminate boilerplate while maintaining flexibility.
Installation:
pip install lightning
Convert PyTorch to Lightning (3 steps):
import lightning as L
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
# Step 1: Define LightningModule (organize your PyTorch code)
class LitModel(L.LightningModule):
def __init__(self, hidden_size=128):
super().__init__()
self.model = nn.Sequential(
nn.Linear(28 * 28, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 10)
)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = nn.functional.cross_entropy(y_hat, y)
self.log('train_loss', loss) # Auto-logged to TensorBoard
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=1e-3)
# Step 2: Create data
train_loader = DataLoader(train_dataset, batch_size=32)
# Step 3: Train with Trainer (handles everything else!)
trainer = L.Trainer(max_epochs=10, accelerator='gpu', devices=2)
model = LitModel()
trainer.fit(model, train_loader)
That's it! Trainer handles:
- GPU/TPU/CPU switching
- Distributed training (DDP, FSDP, DeepSpeed)
- Mixed precision (FP16, BF16)
- Gradient accumulation
- Checkpointing
- Logging
- Progress bars
Common workflows
Workflow 1: From PyTorch to Lightning
Original PyTorch code:
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
model.to('cuda')
for epoch in range(max_epochs):
for batch in train_loader:
batch = batch.to('cuda')
optimizer.zero_grad()
loss = model(batch)
loss.backward()
optimizer.step()
Lightning version:
class LitModel(L.LightningModule):
def __init__(self):
super().__init__()
self.model = MyModel()
def training_step(self, batch, batch_idx):
loss = self.model(batch) # No .to('cuda') needed!
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters())
# Train
trainer = L.Trainer(max_epochs=10, accelerator='gpu')
trainer.fit(LitModel(), train_loader)
Benefits: 40+ lines → 15 lines, no device management, automatic distributed
Workflow 2: Validation and testing
class LitModel(L.LightningModule):
def __init__(self):
super().__init__()
self.model = MyModel()
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
loss = nn.functional.cross_entropy(y_hat, y)
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
val_loss = nn.functional.cross_entropy(y_hat, y)
acc = (y_hat.argmax(dim=1) == y).float().mean()
self.log('val_loss', val_loss)
self.log('val_acc', acc)
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model(x)
test_loss = nn.functional.cross_entropy(y_hat, y)
self.log('test_loss', test_loss)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=1e-3)
# Train with validation
trainer = L.Trainer(max_epochs=10)
trainer.fit(model, train_loader, val_loader)
# Test
trainer.test(model, test_loader)
Automatic features:
- Validation runs every epoch by default
- Metrics logged to TensorBoard
- Best model checkpointing based on val_loss
Workflow 3: Distributed training (DDP)
# Same code as single GPU!
model = LitModel()
# 8 GPUs with DDP (automatic!)
trainer = L.Trainer(
accelerator='gpu',
devices=8,
strategy='ddp' # Or 'fsdp', 'deepspeed'
)
trainer.fit(model, train_loader)
Launch:
# Single command, Lightning handles the rest
python train.py
No changes needed:
- Automatic data distribution
- Gradient synchronization
- Multi-node support (just set
num_nodes=2)
Workflow 4: Callbacks for monitoring
from lightning.pytorch.callbacks import ModelCheckpoint, EarlyStopping, LearningRateMonitor
# Create callbacks
checkpoint = ModelCheckpoint(
monitor='val_loss',
mode='min',
save_top_k=3,
filename='model-{epoch:02d}-{val_loss:.2f}'
)
early_stop = EarlyStopping(
monitor='val_loss',
patience=5,
mode='min'
)
lr_monitor = LearningRateMonitor(logging_interval='epoch')
# Add to Trainer
trainer = L.Trainer(
max_epochs=100,
callbacks=[checkpoint, early_stop, lr_monitor]
)
trainer.fit(model, train_loader, val_loader)
Result:
- Auto-saves best 3 models
- Stops early if no improvement for 5 epochs
- Logs learning rate to TensorBoard
Workflow 5: Learning rate scheduling
class LitModel(L.LightningModule):
# ... (training_step, etc.)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
# Cosine annealing
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=100,
eta_min=1e-5
)
return {
'optimizer': optimizer,
'lr_scheduler': {
'scheduler': scheduler,
'interval': 'epoch', # Update per epoch
'frequency': 1
}
}
# Learning rate auto-logged!
trainer = L.Trainer(max_epochs=100)
trainer.fit(model, train_loader)
When to use vs alternatives
Use PyTorch Lightning when:
- Want clean, organized code
- Need production-ready training loops
- Switching between single GPU, multi-GPU, TPU
- Want built-in callbacks and logging
- Team collaboration (standardized structure)
Key advantages:
- Organized: Separates research code from engineering
- Automatic: DDP, FSDP, DeepSpeed with 1 line
- Callbacks: Modular training extensions
- Reproducible: Less boilerplate = fewer bugs
- Tested: 1M+ downloads/month, battle-tested
Use alternatives instead:
- Accelerate: Minimal changes to existing code, more flexibility
- Ray Train: Multi-node orchestration, hyperparameter tuning
- Raw PyTorch: Maximum control, learning purposes
- Keras: TensorFlow ecosystem
Common issues
Issue: Loss not decreasing
Check data and model setup:
# Add to training_step
def training_step(self, batch, batch_idx):
if batch_idx == 0:
print(f"Batch shape: {batch[0].shape}")
print(f"Labels: {batch[1]}")
loss = ...
return loss
Issue: Out of memory
Reduce batch size or use gradient accumulation:
trainer = L.Trainer(
accumulate_grad_batches=4, # Effective batch = batch_size × 4
precision='bf16' # Or 'fp16', reduces memory 50%
)
Issue: Validation not running
Ensure you pass val_loader:
# WRONG
trainer.fit(model, train_loader)
# CORRECT
trainer.fit(model, train_loader, val_loader)
Issue: DDP spawns multiple processes unexpectedly
Lightning auto-detects GPUs. Explicitly set devices:
# Test on CPU first
trainer = L.Trainer(accelerator='cpu', devices=1)
# Then GPU
trainer = L.Trainer(accelerator='gpu', devices=1)
Advanced topics
Callbacks: See references/callbacks.md for EarlyStopping, ModelCheckpoint, custom callbacks, and callback hooks.
Distributed strategies: See references/distributed.md for DDP, FSDP, DeepSpeed ZeRO integration, multi-node setup.
Hyperparameter tuning: See references/hyperparameter-tuning.md for integration with Optuna, Ray Tune, and WandB sweeps.
Hardware requirements
- CPU: Works (good for debugging)
- Single GPU: Works
- Multi-GPU: DDP (default), FSDP, or DeepSpeed
- Multi-node: DDP, FSDP, DeepSpeed
- TPU: Supported (8 cores)
- Apple MPS: Supported
Precision options:
- FP32 (default)
- FP16 (V100, older GPUs)
- BF16 (A100/H100, recommended)
- FP8 (H100)
Resources
- Docs: https://lightning.ai/docs/pytorch/stable/
- GitHub: https://github.com/Lightning-AI/pytorch-lightning ⭐ 29,000+
- Version: 2.5.5+
- Examples: https://github.com/Lightning-AI/pytorch-lightning/tree/master/examples
- Discord: https://discord.gg/lightning-ai
- Used by: Kaggle winners, research labs, production teams
More by davila7
View allBuild complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Agile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
