Parameter-efficient fine-tuning for LLMs using LoRA, QLoRA, and 25+ methods. Use when fine-tuning large models (7B-70B) with limited GPU memory, when you need to train <1% of parameters with minimal accuracy loss, or for multi-adapter serving. HuggingFace's official library integrated with transformers ecosystem.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: peft-fine-tuning description: Parameter-efficient fine-tuning for LLMs using LoRA, QLoRA, and 25+ methods. Use when fine-tuning large models (7B-70B) with limited GPU memory, when you need to train <1% of parameters with minimal accuracy loss, or for multi-adapter serving. HuggingFace's official library integrated with transformers ecosystem. version: 1.0.0 author: Orchestra Research license: MIT tags: [Fine-Tuning, PEFT, LoRA, QLoRA, Parameter-Efficient, Adapters, Low-Rank, Memory Optimization, Multi-Adapter] dependencies: [peft>=0.13.0, transformers>=4.45.0, torch>=2.0.0, bitsandbytes>=0.43.0]
PEFT (Parameter-Efficient Fine-Tuning)
Fine-tune LLMs by training <1% of parameters using LoRA, QLoRA, and 25+ adapter methods.
When to use PEFT
Use PEFT/LoRA when:
- Fine-tuning 7B-70B models on consumer GPUs (RTX 4090, A100)
- Need to train <1% parameters (6MB adapters vs 14GB full model)
- Want fast iteration with multiple task-specific adapters
- Deploying multiple fine-tuned variants from one base model
Use QLoRA (PEFT + quantization) when:
- Fine-tuning 70B models on single 24GB GPU
- Memory is the primary constraint
- Can accept ~5% quality trade-off vs full fine-tuning
Use full fine-tuning instead when:
- Training small models (<1B parameters)
- Need maximum quality and have compute budget
- Significant domain shift requires updating all weights
Quick start
Installation
# Basic installation
pip install peft
# With quantization support (recommended)
pip install peft bitsandbytes
# Full stack
pip install peft transformers accelerate bitsandbytes datasets
LoRA fine-tuning (standard)
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from peft import get_peft_model, LoraConfig, TaskType
from datasets import load_dataset
# Load base model
model_name = "meta-llama/Llama-3.1-8B"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# LoRA configuration
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=16, # Rank (8-64, higher = more capacity)
lora_alpha=32, # Scaling factor (typically 2*r)
lora_dropout=0.05, # Dropout for regularization
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Attention layers
bias="none" # Don't train biases
)
# Apply LoRA
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# Output: trainable params: 13,631,488 || all params: 8,043,307,008 || trainable%: 0.17%
# Prepare dataset
dataset = load_dataset("databricks/databricks-dolly-15k", split="train")
def tokenize(example):
text = f"### Instruction:\n{example['instruction']}\n\n### Response:\n{example['response']}"
return tokenizer(text, truncation=True, max_length=512, padding="max_length")
tokenized = dataset.map(tokenize, remove_columns=dataset.column_names)
# Training
training_args = TrainingArguments(
output_dir="./lora-llama",
num_train_epochs=3,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-4,
fp16=True,
logging_steps=10,
save_strategy="epoch"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized,
data_collator=lambda data: {"input_ids": torch.stack([f["input_ids"] for f in data]),
"attention_mask": torch.stack([f["attention_mask"] for f in data]),
"labels": torch.stack([f["input_ids"] for f in data])}
)
trainer.train()
# Save adapter only (6MB vs 16GB)
model.save_pretrained("./lora-llama-adapter")
QLoRA fine-tuning (memory-efficient)
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training
# 4-bit quantization config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # NormalFloat4 (best for LLMs)
bnb_4bit_compute_dtype="bfloat16", # Compute in bf16
bnb_4bit_use_double_quant=True # Nested quantization
)
# Load quantized model
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-70B",
quantization_config=bnb_config,
device_map="auto"
)
# Prepare for training (enables gradient checkpointing)
model = prepare_model_for_kbit_training(model)
# LoRA config for QLoRA
lora_config = LoraConfig(
r=64, # Higher rank for 70B
lora_alpha=128,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
# 70B model now fits on single 24GB GPU!
LoRA parameter selection
Rank (r) - capacity vs efficiency
| Rank | Trainable Params | Memory | Quality | Use Case |
|---|---|---|---|---|
| 4 | ~3M | Minimal | Lower | Simple tasks, prototyping |
| 8 | ~7M | Low | Good | Recommended starting point |
| 16 | ~14M | Medium | Better | General fine-tuning |
| 32 | ~27M | Higher | High | Complex tasks |
| 64 | ~54M | High | Highest | Domain adaptation, 70B models |
Alpha (lora_alpha) - scaling factor
# Rule of thumb: alpha = 2 * rank
LoraConfig(r=16, lora_alpha=32) # Standard
LoraConfig(r=16, lora_alpha=16) # Conservative (lower learning rate effect)
LoraConfig(r=16, lora_alpha=64) # Aggressive (higher learning rate effect)
Target modules by architecture
# Llama / Mistral / Qwen
target_modules = ["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
# GPT-2 / GPT-Neo
target_modules = ["c_attn", "c_proj", "c_fc"]
# Falcon
target_modules = ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"]
# BLOOM
target_modules = ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"]
# Auto-detect all linear layers
target_modules = "all-linear" # PEFT 0.6.0+
Loading and merging adapters
Load trained adapter
from peft import PeftModel, AutoPeftModelForCausalLM
from transformers import AutoModelForCausalLM
# Option 1: Load with PeftModel
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B")
model = PeftModel.from_pretrained(base_model, "./lora-llama-adapter")
# Option 2: Load directly (recommended)
model = AutoPeftModelForCausalLM.from_pretrained(
"./lora-llama-adapter",
device_map="auto"
)
Merge adapter into base model
# Merge for deployment (no adapter overhead)
merged_model = model.merge_and_unload()
# Save merged model
merged_model.save_pretrained("./llama-merged")
tokenizer.save_pretrained("./llama-merged")
# Push to Hub
merged_model.push_to_hub("username/llama-finetuned")
Multi-adapter serving
from peft import PeftModel
# Load base with first adapter
model = AutoPeftModelForCausalLM.from_pretrained("./adapter-task1")
# Load additional adapters
model.load_adapter("./adapter-task2", adapter_name="task2")
model.load_adapter("./adapter-task3", adapter_name="task3")
# Switch between adapters at runtime
model.set_adapter("task1") # Use task1 adapter
output1 = model.generate(**inputs)
model.set_adapter("task2") # Switch to task2
output2 = model.generate(**inputs)
# Disable adapters (use base model)
with model.disable_adapter():
base_output = model.generate(**inputs)
PEFT methods comparison
| Method | Trainable % | Memory | Speed | Best For |
|---|---|---|---|---|
| LoRA | 0.1-1% | Low | Fast | General fine-tuning |
| QLoRA | 0.1-1% | Very Low | Medium | Memory-constrained |
| AdaLoRA | 0.1-1% | Low | Medium | Automatic rank selection |
| IA3 | 0.01% | Minimal | Fastest | Few-shot adaptation |
| Prefix Tuning | 0.1% | Low | Medium | Generation control |
| Prompt Tuning | 0.001% | Minimal | Fast | Simple task adaptation |
| P-Tuning v2 | 0.1% | Low | Medium | NLU tasks |
IA3 (minimal parameters)
from peft import IA3Config
ia3_config = IA3Config(
target_modules=["q_proj", "v_proj", "k_proj", "down_proj"],
feedforward_modules=["down_proj"]
)
model = get_peft_model(model, ia3_config)
# Trains only 0.01% of parameters!
Prefix Tuning
from peft import PrefixTuningConfig
prefix_config = PrefixTuningConfig(
task_type="CAUSAL_LM",
num_virtual_tokens=20, # Prepended tokens
prefix_projection=True # Use MLP projection
)
model = get_peft_model(model, prefix_config)
Integration patterns
With TRL (SFTTrainer)
from trl import SFTTrainer, SFTConfig
from peft import LoraConfig
lora_config = LoraConfig(r=16, lora_alpha=32, target_modules="all-linear")
trainer = SFTTrainer(
model=model,
args=SFTConfig(output_dir="./output", max_seq_length=512),
train_dataset=dataset,
peft_config=lora_config, # Pass LoRA config directly
)
trainer.train()
With Axolotl (YAML config)
# axolotl config.yaml
adapter: lora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
lora_target_linear: true # Target all linear layers
With vLLM (inference)
from vllm import LLM
from vllm.lora.request import LoRARequest
# Load base model with LoRA support
llm = LLM(model="meta-llama/Llama-3.1-8B", enable_lora=True)
# Serve with adapter
outputs = llm.generate(
prompts,
lora_request=LoRARequest("adapter1", 1, "./lora-adapter")
)
Performance benchmarks
Memory usage (Llama 3.1 8B)
| Method | GPU Memory | Trainable Params |
|---|---|---|
| Full fine-tuning | 60+ GB | 8B (100%) |
| LoRA r=16 | 18 GB | 14M (0.17%) |
| QLoRA r=16 | 6 GB | 14M (0.17%) |
| IA3 | 16 GB | 800K (0.01%) |
Training speed (A100 80GB)
| Method | Tokens/sec | vs Full FT |
|---|---|---|
| Full FT | 2,500 | 1x |
| LoRA | 3,200 | 1.3x |
| QLoRA | 2,100 | 0.84x |
Quality (MMLU benchmark)
| Model | Full FT | LoRA | QLoRA |
|---|---|---|---|
| Llama 2-7B | 45.3 | 44.8 | 44.1 |
| Llama 2-13B | 54.8 | 54.2 | 53.5 |
Common issues
CUDA OOM during training
# Solution 1: Enable gradient checkpointing
model.gradient_checkpointing_enable()
# Solution 2: Reduce batch size + increase accumulation
TrainingArguments(
per_device_train_batch_size=1,
gradient_accumulation_steps=16
)
# Solution 3: Use QLoRA
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4")
Adapter not applying
# Verify adapter is active
print(model.active_adapters) # Should show adapter name
# Check trainable parameters
model.print_trainable_parameters()
# Ensure model in training mode
model.train()
Quality degradation
# Increase rank
LoraConfig(r=32, lora_alpha=64)
# Target more modules
target_modules = "all-linear"
# Use more training data and epochs
TrainingArguments(num_train_epochs=5)
# Lower learning rate
TrainingArguments(learning_rate=1e-4)
Best practices
- Start with r=8-16, increase if quality insufficient
- Use alpha = 2 * rank as starting point
- Target attention + MLP layers for best quality/efficiency
- Enable gradient checkpointing for memory savings
- Save adapters frequently (small files, easy rollback)
- Evaluate on held-out data before merging
- Use QLoRA for 70B+ models on consumer hardware
References
- Advanced Usage - DoRA, LoftQ, rank stabilization, custom modules
- Troubleshooting - Common errors, debugging, optimization
Resources
- GitHub: https://github.com/huggingface/peft
- Docs: https://huggingface.co/docs/peft
- LoRA Paper: arXiv:2106.09685
- QLoRA Paper: arXiv:2305.14314
- Models: https://huggingface.co/models?library=peft
More by davila7
View allAgile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
