Mass spectrometry analysis. Process mzML/MGF/MSP, spectral similarity (cosine, modified cosine), metadata harmonization, compound ID, for metabolomics and MS data processing.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: matchms description: "Mass spectrometry analysis. Process mzML/MGF/MSP, spectral similarity (cosine, modified cosine), metadata harmonization, compound ID, for metabolomics and MS data processing."
Matchms
Overview
Matchms is an open-source Python library for mass spectrometry data processing and analysis. Import spectra from various formats, standardize metadata, filter peaks, calculate spectral similarities, and build reproducible analytical workflows.
Core Capabilities
1. Importing and Exporting Mass Spectrometry Data
Load spectra from multiple file formats and export processed data:
from matchms.importing import load_from_mgf, load_from_mzml, load_from_msp, load_from_json
from matchms.exporting import save_as_mgf, save_as_msp, save_as_json
# Import spectra
spectra = list(load_from_mgf("spectra.mgf"))
spectra = list(load_from_mzml("data.mzML"))
spectra = list(load_from_msp("library.msp"))
# Export processed spectra
save_as_mgf(spectra, "output.mgf")
save_as_json(spectra, "output.json")
Supported formats:
- mzML and mzXML (raw mass spectrometry formats)
- MGF (Mascot Generic Format)
- MSP (spectral library format)
- JSON (GNPS-compatible)
- metabolomics-USI references
- Pickle (Python serialization)
For detailed importing/exporting documentation, consult references/importing_exporting.md.
2. Spectrum Filtering and Processing
Apply comprehensive filters to standardize metadata and refine peak data:
from matchms.filtering import default_filters, normalize_intensities
from matchms.filtering import select_by_relative_intensity, require_minimum_number_of_peaks
# Apply default metadata harmonization filters
spectrum = default_filters(spectrum)
# Normalize peak intensities
spectrum = normalize_intensities(spectrum)
# Filter peaks by relative intensity
spectrum = select_by_relative_intensity(spectrum, intensity_from=0.01, intensity_to=1.0)
# Require minimum peaks
spectrum = require_minimum_number_of_peaks(spectrum, n_required=5)
Filter categories:
- Metadata processing: Harmonize compound names, derive chemical structures, standardize adducts, correct charges
- Peak filtering: Normalize intensities, select by m/z or intensity, remove precursor peaks
- Quality control: Require minimum peaks, validate precursor m/z, ensure metadata completeness
- Chemical annotation: Add fingerprints, derive InChI/SMILES, repair structural mismatches
Matchms provides 40+ filters. For the complete filter reference, consult references/filtering.md.
3. Calculating Spectral Similarities
Compare spectra using various similarity metrics:
from matchms import calculate_scores
from matchms.similarity import CosineGreedy, ModifiedCosine, CosineHungarian
# Calculate cosine similarity (fast, greedy algorithm)
scores = calculate_scores(references=library_spectra,
queries=query_spectra,
similarity_function=CosineGreedy())
# Calculate modified cosine (accounts for precursor m/z differences)
scores = calculate_scores(references=library_spectra,
queries=query_spectra,
similarity_function=ModifiedCosine(tolerance=0.1))
# Get best matches
best_matches = scores.scores_by_query(query_spectra[0], sort=True)[:10]
Available similarity functions:
- CosineGreedy/CosineHungarian: Peak-based cosine similarity with different matching algorithms
- ModifiedCosine: Cosine similarity accounting for precursor mass differences
- NeutralLossesCosine: Similarity based on neutral loss patterns
- FingerprintSimilarity: Molecular structure similarity using fingerprints
- MetadataMatch: Compare user-defined metadata fields
- PrecursorMzMatch/ParentMassMatch: Simple mass-based filtering
For detailed similarity function documentation, consult references/similarity.md.
4. Building Processing Pipelines
Create reproducible, multi-step analysis workflows:
from matchms import SpectrumProcessor
from matchms.filtering import default_filters, normalize_intensities
from matchms.filtering import select_by_relative_intensity, remove_peaks_around_precursor_mz
# Define a processing pipeline
processor = SpectrumProcessor([
default_filters,
normalize_intensities,
lambda s: select_by_relative_intensity(s, intensity_from=0.01),
lambda s: remove_peaks_around_precursor_mz(s, mz_tolerance=17)
])
# Apply to all spectra
processed_spectra = [processor(s) for s in spectra]
5. Working with Spectrum Objects
The core Spectrum class contains mass spectral data:
from matchms import Spectrum
import numpy as np
# Create a spectrum
mz = np.array([100.0, 150.0, 200.0, 250.0])
intensities = np.array([0.1, 0.5, 0.9, 0.3])
metadata = {"precursor_mz": 250.5, "ionmode": "positive"}
spectrum = Spectrum(mz=mz, intensities=intensities, metadata=metadata)
# Access spectrum properties
print(spectrum.peaks.mz) # m/z values
print(spectrum.peaks.intensities) # Intensity values
print(spectrum.get("precursor_mz")) # Metadata field
# Visualize spectra
spectrum.plot()
spectrum.plot_against(reference_spectrum)
6. Metadata Management
Standardize and harmonize spectrum metadata:
# Metadata is automatically harmonized
spectrum.set("Precursor_mz", 250.5) # Gets harmonized to lowercase key
print(spectrum.get("precursor_mz")) # Returns 250.5
# Derive chemical information
from matchms.filtering import derive_inchi_from_smiles, derive_inchikey_from_inchi
from matchms.filtering import add_fingerprint
spectrum = derive_inchi_from_smiles(spectrum)
spectrum = derive_inchikey_from_inchi(spectrum)
spectrum = add_fingerprint(spectrum, fingerprint_type="morgan", nbits=2048)
Common Workflows
For typical mass spectrometry analysis workflows, including:
- Loading and preprocessing spectral libraries
- Matching unknown spectra against reference libraries
- Quality filtering and data cleaning
- Large-scale similarity comparisons
- Network-based spectral clustering
Consult references/workflows.md for detailed examples.
Installation
uv pip install matchms
For molecular structure processing (SMILES, InChI):
uv pip install matchms[chemistry]
Reference Documentation
Detailed reference documentation is available in the references/ directory:
filtering.md- Complete filter function reference with descriptionssimilarity.md- All similarity metrics and when to use themimporting_exporting.md- File format details and I/O operationsworkflows.md- Common analysis patterns and examples
Load these references as needed for detailed information about specific matchms capabilities.
More by davila7
View allAgile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
