State-space model with O(n) complexity vs Transformers' O(n²). 5× faster inference, million-token sequences, no KV cache. Selective SSM with hardware-aware design. Mamba-1 (d_state=16) and Mamba-2 (d_state=128, multi-head). Models 130M-2.8B on HuggingFace.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: mamba-architecture description: State-space model with O(n) complexity vs Transformers' O(n²). 5× faster inference, million-token sequences, no KV cache. Selective SSM with hardware-aware design. Mamba-1 (d_state=16) and Mamba-2 (d_state=128, multi-head). Models 130M-2.8B on HuggingFace. version: 1.0.0 author: Orchestra Research license: MIT tags: [Model Architecture, Mamba, State Space Models, SSM, Linear Complexity, Long Context, Efficient Inference, Hardware-Aware, Alternative To Transformers] dependencies: [mamba-ssm, torch, transformers, causal-conv1d]
Mamba - Selective State Space Models
Quick start
Mamba is a state-space model architecture achieving O(n) linear complexity for sequence modeling.
Installation:
# Install causal-conv1d (optional, for efficiency)
pip install causal-conv1d>=1.4.0
# Install Mamba
pip install mamba-ssm
# Or both together
pip install mamba-ssm[causal-conv1d]
Prerequisites: Linux, NVIDIA GPU, PyTorch 1.12+, CUDA 11.6+
Basic usage (Mamba block):
import torch
from mamba_ssm import Mamba
batch, length, dim = 2, 64, 16
x = torch.randn(batch, length, dim).to("cuda")
model = Mamba(
d_model=dim, # Model dimension
d_state=16, # SSM state dimension
d_conv=4, # Conv1d kernel size
expand=2 # Expansion factor
).to("cuda")
y = model(x) # O(n) complexity!
assert y.shape == x.shape
Common workflows
Workflow 1: Language model with Mamba-2
Complete LM with generation:
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from mamba_ssm.models.config_mamba import MambaConfig
import torch
# Configure Mamba-2 LM
config = MambaConfig(
d_model=1024, # Hidden dimension
n_layer=24, # Number of layers
vocab_size=50277, # Vocabulary size
ssm_cfg=dict(
layer="Mamba2", # Use Mamba-2
d_state=128, # Larger state for Mamba-2
headdim=64, # Head dimension
ngroups=1 # Number of groups
)
)
model = MambaLMHeadModel(config, device="cuda", dtype=torch.float16)
# Generate text
input_ids = torch.randint(0, 1000, (1, 20), device="cuda", dtype=torch.long)
output = model.generate(
input_ids=input_ids,
max_length=100,
temperature=0.7,
top_p=0.9
)
Workflow 2: Use pretrained Mamba models
Load from HuggingFace:
from transformers import AutoTokenizer
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
# Load pretrained model
model_name = "state-spaces/mamba-2.8b"
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") # Use compatible tokenizer
model = MambaLMHeadModel.from_pretrained(model_name, device="cuda", dtype=torch.float16)
# Generate
prompt = "The future of AI is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
output_ids = model.generate(
input_ids=input_ids,
max_length=200,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.2
)
generated_text = tokenizer.decode(output_ids[0])
print(generated_text)
Available models:
state-spaces/mamba-130mstate-spaces/mamba-370mstate-spaces/mamba-790mstate-spaces/mamba-1.4bstate-spaces/mamba-2.8b
Workflow 3: Mamba-1 vs Mamba-2
Mamba-1 (smaller state):
from mamba_ssm import Mamba
model = Mamba(
d_model=256,
d_state=16, # Smaller state dimension
d_conv=4,
expand=2
).to("cuda")
Mamba-2 (multi-head, larger state):
from mamba_ssm import Mamba2
model = Mamba2(
d_model=256,
d_state=128, # Larger state dimension
d_conv=4,
expand=2,
headdim=64, # Head dimension for multi-head
ngroups=1 # Parallel groups
).to("cuda")
Key differences:
- State size: Mamba-1 (d_state=16) vs Mamba-2 (d_state=128)
- Architecture: Mamba-2 has multi-head structure
- Normalization: Mamba-2 uses RMSNorm
- Distributed: Mamba-2 supports tensor parallelism
Workflow 4: Benchmark vs Transformers
Generation speed comparison:
# Benchmark Mamba
python benchmarks/benchmark_generation_mamba_simple.py \
--model-name "state-spaces/mamba-2.8b" \
--prompt "The future of machine learning is" \
--topp 0.9 --temperature 0.7 --repetition-penalty 1.2
# Benchmark Transformer
python benchmarks/benchmark_generation_mamba_simple.py \
--model-name "EleutherAI/pythia-2.8b" \
--prompt "The future of machine learning is" \
--topp 0.9 --temperature 0.7 --repetition-penalty 1.2
Expected results:
- Mamba: 5× faster inference
- Memory: No KV cache needed
- Scaling: Linear with sequence length
When to use vs alternatives
Use Mamba when:
- Need long sequences (100K+ tokens)
- Want faster inference than Transformers
- Memory-constrained (no KV cache)
- Building streaming applications
- Linear scaling important
Advantages:
- O(n) complexity: Linear vs quadratic
- 5× faster inference: No attention overhead
- No KV cache: Lower memory usage
- Million-token sequences: Hardware-efficient
- Streaming: Constant memory per token
Use alternatives instead:
- Transformers: Need best-in-class performance, have compute
- RWKV: Want RNN+Transformer hybrid
- RetNet: Need retention-based architecture
- Hyena: Want convolution-based approach
Common issues
Issue: CUDA out of memory
Reduce batch size or use gradient checkpointing:
model = MambaLMHeadModel(config, device="cuda", dtype=torch.float16)
model.gradient_checkpointing_enable() # Enable checkpointing
Issue: Slow installation
Install binary wheels (not source):
pip install mamba-ssm --no-build-isolation
Issue: Missing causal-conv1d
Install separately:
pip install causal-conv1d>=1.4.0
Issue: Model not loading from HuggingFace
Use MambaLMHeadModel.from_pretrained (not AutoModel):
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
model = MambaLMHeadModel.from_pretrained("state-spaces/mamba-2.8b")
Advanced topics
Selective SSM: See references/selective-ssm.md for mathematical formulation, state-space equations, and how selectivity enables O(n) complexity.
Mamba-2 architecture: See references/mamba2-details.md for multi-head structure, tensor parallelism, and distributed training setup.
Performance optimization: See references/performance.md for hardware-aware design, CUDA kernels, and memory efficiency techniques.
Hardware requirements
- GPU: NVIDIA with CUDA 11.6+
- VRAM:
- 130M model: 2GB
- 370M model: 4GB
- 790M model: 8GB
- 1.4B model: 14GB
- 2.8B model: 28GB (FP16)
- Inference: 5× faster than Transformers
- Memory: No KV cache (lower than Transformers)
Performance (vs Transformers):
- Speed: 5× faster inference
- Memory: 50% less (no KV cache)
- Scaling: Linear vs quadratic
Resources
- Paper (Mamba-1): https://arxiv.org/abs/2312.00752 (Dec 2023)
- Paper (Mamba-2): https://arxiv.org/abs/2405.21060 (May 2024)
- GitHub: https://github.com/state-spaces/mamba ⭐ 13,000+
- Models: https://huggingface.co/state-spaces
- Docs: Repository README and wiki
More by davila7
View allAgile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
