Large Language and Vision Assistant. Enables visual instruction tuning and image-based conversations. Combines CLIP vision encoder with Vicuna/LLaMA language models. Supports multi-turn image chat, visual question answering, and instruction following. Use for vision-language chatbots or image understanding tasks. Best for conversational image analysis.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: llava description: Large Language and Vision Assistant. Enables visual instruction tuning and image-based conversations. Combines CLIP vision encoder with Vicuna/LLaMA language models. Supports multi-turn image chat, visual question answering, and instruction following. Use for vision-language chatbots or image understanding tasks. Best for conversational image analysis. version: 1.0.0 author: Orchestra Research license: MIT tags: [LLaVA, Vision-Language, Multimodal, Visual Question Answering, Image Chat, CLIP, Vicuna, Conversational AI, Instruction Tuning, VQA] dependencies: [transformers, torch, pillow]
LLaVA - Large Language and Vision Assistant
Open-source vision-language model for conversational image understanding.
When to use LLaVA
Use when:
- Building vision-language chatbots
- Visual question answering (VQA)
- Image description and captioning
- Multi-turn image conversations
- Visual instruction following
- Document understanding with images
Metrics:
- 23,000+ GitHub stars
- GPT-4V level capabilities (targeted)
- Apache 2.0 License
- Multiple model sizes (7B-34B params)
Use alternatives instead:
- GPT-4V: Highest quality, API-based
- CLIP: Simple zero-shot classification
- BLIP-2: Better for captioning only
- Flamingo: Research, not open-source
Quick start
Installation
# Clone repository
git clone https://github.com/haotian-liu/LLaVA
cd LLaVA
# Install
pip install -e .
Basic usage
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from PIL import Image
import torch
# Load model
model_path = "liuhaotian/llava-v1.5-7b"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path)
)
# Load image
image = Image.open("image.jpg")
image_tensor = process_images([image], image_processor, model.config)
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
# Create conversation
conv = conv_templates["llava_v1"].copy()
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# Generate response
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True,
temperature=0.2,
max_new_tokens=512
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
print(response)
Available models
| Model | Parameters | VRAM | Quality |
|---|---|---|---|
| LLaVA-v1.5-7B | 7B | ~14 GB | Good |
| LLaVA-v1.5-13B | 13B | ~28 GB | Better |
| LLaVA-v1.6-34B | 34B | ~70 GB | Best |
# Load different models
model_7b = "liuhaotian/llava-v1.5-7b"
model_13b = "liuhaotian/llava-v1.5-13b"
model_34b = "liuhaotian/llava-v1.6-34b"
# 4-bit quantization for lower VRAM
load_4bit = True # Reduces VRAM by ~4×
CLI usage
# Single image query
python -m llava.serve.cli \
--model-path liuhaotian/llava-v1.5-7b \
--image-file image.jpg \
--query "What is in this image?"
# Multi-turn conversation
python -m llava.serve.cli \
--model-path liuhaotian/llava-v1.5-7b \
--image-file image.jpg
# Then type questions interactively
Web UI (Gradio)
# Launch Gradio interface
python -m llava.serve.gradio_web_server \
--model-path liuhaotian/llava-v1.5-7b \
--load-4bit # Optional: reduce VRAM
# Access at http://localhost:7860
Multi-turn conversations
# Initialize conversation
conv = conv_templates["llava_v1"].copy()
# Turn 1
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
response1 = generate(conv, model, image) # "A dog playing in a park"
# Turn 2
conv.messages[-1][1] = response1 # Add previous response
conv.append_message(conv.roles[0], "What breed is the dog?")
conv.append_message(conv.roles[1], None)
response2 = generate(conv, model, image) # "Golden Retriever"
# Turn 3
conv.messages[-1][1] = response2
conv.append_message(conv.roles[0], "What time of day is it?")
conv.append_message(conv.roles[1], None)
response3 = generate(conv, model, image)
Common tasks
Image captioning
question = "Describe this image in detail."
response = ask(model, image, question)
Visual question answering
question = "How many people are in the image?"
response = ask(model, image, question)
Object detection (textual)
question = "List all the objects you can see in this image."
response = ask(model, image, question)
Scene understanding
question = "What is happening in this scene?"
response = ask(model, image, question)
Document understanding
question = "What is the main topic of this document?"
response = ask(model, document_image, question)
Training custom model
# Stage 1: Feature alignment (558K image-caption pairs)
bash scripts/v1_5/pretrain.sh
# Stage 2: Visual instruction tuning (150K instruction data)
bash scripts/v1_5/finetune.sh
Quantization (reduce VRAM)
# 4-bit quantization
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path="liuhaotian/llava-v1.5-13b",
model_base=None,
model_name=get_model_name_from_path("liuhaotian/llava-v1.5-13b"),
load_4bit=True # Reduces VRAM ~4×
)
# 8-bit quantization
load_8bit=True # Reduces VRAM ~2×
Best practices
- Start with 7B model - Good quality, manageable VRAM
- Use 4-bit quantization - Reduces VRAM significantly
- GPU required - CPU inference extremely slow
- Clear prompts - Specific questions get better answers
- Multi-turn conversations - Maintain conversation context
- Temperature 0.2-0.7 - Balance creativity/consistency
- max_new_tokens 512-1024 - For detailed responses
- Batch processing - Process multiple images sequentially
Performance
| Model | VRAM (FP16) | VRAM (4-bit) | Speed (tokens/s) |
|---|---|---|---|
| 7B | ~14 GB | ~4 GB | ~20 |
| 13B | ~28 GB | ~8 GB | ~12 |
| 34B | ~70 GB | ~18 GB | ~5 |
On A100 GPU
Benchmarks
LLaVA achieves competitive scores on:
- VQAv2: 78.5%
- GQA: 62.0%
- MM-Vet: 35.4%
- MMBench: 64.3%
Limitations
- Hallucinations - May describe things not in image
- Spatial reasoning - Struggles with precise locations
- Small text - Difficulty reading fine print
- Object counting - Imprecise for many objects
- VRAM requirements - Need powerful GPU
- Inference speed - Slower than CLIP
Integration with frameworks
LangChain
from langchain.llms.base import LLM
class LLaVALLM(LLM):
def _call(self, prompt, stop=None):
# Custom LLaVA inference
return response
llm = LLaVALLM()
Gradio App
import gradio as gr
def chat(image, text, history):
response = ask_llava(model, image, text)
return response
demo = gr.ChatInterface(
chat,
additional_inputs=[gr.Image(type="pil")],
title="LLaVA Chat"
)
demo.launch()
Resources
- GitHub: https://github.com/haotian-liu/LLaVA ⭐ 23,000+
- Paper: https://arxiv.org/abs/2304.08485
- Demo: https://llava.hliu.cc
- Models: https://huggingface.co/liuhaotian
- License: Apache 2.0
More by davila7
View allAgile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
