Implements and trains LLMs using Lightning AI's LitGPT with 20+ pretrained architectures (Llama, Gemma, Phi, Qwen, Mistral). Use when need clean model implementations, educational understanding of architectures, or production fine-tuning with LoRA/QLoRA. Single-file implementations, no abstraction layers.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: implementing-llms-litgpt description: Implements and trains LLMs using Lightning AI's LitGPT with 20+ pretrained architectures (Llama, Gemma, Phi, Qwen, Mistral). Use when need clean model implementations, educational understanding of architectures, or production fine-tuning with LoRA/QLoRA. Single-file implementations, no abstraction layers. version: 1.0.0 author: Orchestra Research license: MIT tags: [Model Architecture, LitGPT, Lightning AI, LLM Implementation, LoRA, QLoRA, Fine-Tuning, Llama, Gemma, Phi, Mistral, Educational] dependencies: [litgpt, torch, transformers]
LitGPT - Clean LLM Implementations
Quick start
LitGPT provides 20+ pretrained LLM implementations with clean, readable code and production-ready training workflows.
Installation:
pip install 'litgpt[extra]'
Load and use any model:
from litgpt import LLM
# Load pretrained model
llm = LLM.load("microsoft/phi-2")
# Generate text
result = llm.generate(
"What is the capital of France?",
max_new_tokens=50,
temperature=0.7
)
print(result)
List available models:
litgpt download list
Common workflows
Workflow 1: Fine-tune on custom dataset
Copy this checklist:
Fine-Tuning Setup:
- [ ] Step 1: Download pretrained model
- [ ] Step 2: Prepare dataset
- [ ] Step 3: Configure training
- [ ] Step 4: Run fine-tuning
Step 1: Download pretrained model
# Download Llama 3 8B
litgpt download meta-llama/Meta-Llama-3-8B
# Download Phi-2 (smaller, faster)
litgpt download microsoft/phi-2
# Download Gemma 2B
litgpt download google/gemma-2b
Models are saved to checkpoints/ directory.
Step 2: Prepare dataset
LitGPT supports multiple formats:
Alpaca format (instruction-response):
[
{
"instruction": "What is the capital of France?",
"input": "",
"output": "The capital of France is Paris."
},
{
"instruction": "Translate to Spanish: Hello, how are you?",
"input": "",
"output": "Hola, ¿cómo estás?"
}
]
Save as data/my_dataset.json.
Step 3: Configure training
# Full fine-tuning (requires 40GB+ GPU for 7B models)
litgpt finetune \
meta-llama/Meta-Llama-3-8B \
--data JSON \
--data.json_path data/my_dataset.json \
--train.max_steps 1000 \
--train.learning_rate 2e-5 \
--train.micro_batch_size 1 \
--train.global_batch_size 16
# LoRA fine-tuning (efficient, 16GB GPU)
litgpt finetune_lora \
microsoft/phi-2 \
--data JSON \
--data.json_path data/my_dataset.json \
--lora_r 16 \
--lora_alpha 32 \
--lora_dropout 0.05 \
--train.max_steps 1000 \
--train.learning_rate 1e-4
Step 4: Run fine-tuning
Training saves checkpoints to out/finetune/ automatically.
Monitor training:
# View logs
tail -f out/finetune/logs.txt
# TensorBoard (if using --train.logger_name tensorboard)
tensorboard --logdir out/finetune/lightning_logs
Workflow 2: LoRA fine-tuning on single GPU
Most memory-efficient option.
LoRA Training:
- [ ] Step 1: Choose base model
- [ ] Step 2: Configure LoRA parameters
- [ ] Step 3: Train with LoRA
- [ ] Step 4: Merge LoRA weights (optional)
Step 1: Choose base model
For limited GPU memory (12-16GB):
- Phi-2 (2.7B) - Best quality/size tradeoff
- Llama 3 1B - Smallest, fastest
- Gemma 2B - Good reasoning
Step 2: Configure LoRA parameters
litgpt finetune_lora \
microsoft/phi-2 \
--data JSON \
--data.json_path data/my_dataset.json \
--lora_r 16 \ # LoRA rank (8-64, higher=more capacity)
--lora_alpha 32 \ # LoRA scaling (typically 2×r)
--lora_dropout 0.05 \ # Prevent overfitting
--lora_query true \ # Apply LoRA to query projection
--lora_key false \ # Usually not needed
--lora_value true \ # Apply LoRA to value projection
--lora_projection true \ # Apply LoRA to output projection
--lora_mlp false \ # Usually not needed
--lora_head false # Usually not needed
LoRA rank guide:
r=8: Lightweight, 2-4MB adaptersr=16: Standard, good qualityr=32: High capacity, use for complex tasksr=64: Maximum quality, 4× larger adapters
Step 3: Train with LoRA
litgpt finetune_lora \
microsoft/phi-2 \
--data JSON \
--data.json_path data/my_dataset.json \
--lora_r 16 \
--train.epochs 3 \
--train.learning_rate 1e-4 \
--train.micro_batch_size 4 \
--train.global_batch_size 32 \
--out_dir out/phi2-lora
# Memory usage: ~8-12GB for Phi-2 with LoRA
Step 4: Merge LoRA weights (optional)
Merge LoRA adapters into base model for deployment:
litgpt merge_lora \
out/phi2-lora/final \
--out_dir out/phi2-merged
Now use merged model:
from litgpt import LLM
llm = LLM.load("out/phi2-merged")
Workflow 3: Pretrain from scratch
Train new model on your domain data.
Pretraining:
- [ ] Step 1: Prepare pretraining dataset
- [ ] Step 2: Configure model architecture
- [ ] Step 3: Set up multi-GPU training
- [ ] Step 4: Launch pretraining
Step 1: Prepare pretraining dataset
LitGPT expects tokenized data. Use prepare_dataset.py:
python scripts/prepare_dataset.py \
--source_path data/my_corpus.txt \
--checkpoint_dir checkpoints/tokenizer \
--destination_path data/pretrain \
--split train,val
Step 2: Configure model architecture
Edit config file or use existing:
# config/pythia-160m.yaml
model_name: pythia-160m
block_size: 2048
vocab_size: 50304
n_layer: 12
n_head: 12
n_embd: 768
rotary_percentage: 0.25
parallel_residual: true
bias: true
Step 3: Set up multi-GPU training
# Single GPU
litgpt pretrain \
--config config/pythia-160m.yaml \
--data.data_dir data/pretrain \
--train.max_tokens 10_000_000_000
# Multi-GPU with FSDP
litgpt pretrain \
--config config/pythia-1b.yaml \
--data.data_dir data/pretrain \
--devices 8 \
--train.max_tokens 100_000_000_000
Step 4: Launch pretraining
For large-scale pretraining on cluster:
# Using SLURM
sbatch --nodes=8 --gpus-per-node=8 \
pretrain_script.sh
# pretrain_script.sh content:
litgpt pretrain \
--config config/pythia-1b.yaml \
--data.data_dir /shared/data/pretrain \
--devices 8 \
--num_nodes 8 \
--train.global_batch_size 512 \
--train.max_tokens 300_000_000_000
Workflow 4: Convert and deploy model
Export LitGPT models for production.
Model Deployment:
- [ ] Step 1: Test inference locally
- [ ] Step 2: Quantize model (optional)
- [ ] Step 3: Convert to GGUF (for llama.cpp)
- [ ] Step 4: Deploy with API
Step 1: Test inference locally
from litgpt import LLM
llm = LLM.load("out/phi2-lora/final")
# Single generation
print(llm.generate("What is machine learning?"))
# Streaming
for token in llm.generate("Explain quantum computing", stream=True):
print(token, end="", flush=True)
# Batch inference
prompts = ["Hello", "Goodbye", "Thank you"]
results = [llm.generate(p) for p in prompts]
Step 2: Quantize model (optional)
Reduce model size with minimal quality loss:
# 8-bit quantization (50% size reduction)
litgpt convert_lit_checkpoint \
out/phi2-lora/final \
--dtype bfloat16 \
--quantize bnb.nf4
# 4-bit quantization (75% size reduction)
litgpt convert_lit_checkpoint \
out/phi2-lora/final \
--quantize bnb.nf4-dq # Double quantization
Step 3: Convert to GGUF (for llama.cpp)
python scripts/convert_lit_checkpoint.py \
--checkpoint_path out/phi2-lora/final \
--output_path models/phi2.gguf \
--model_name microsoft/phi-2
Step 4: Deploy with API
from fastapi import FastAPI
from litgpt import LLM
app = FastAPI()
llm = LLM.load("out/phi2-lora/final")
@app.post("/generate")
def generate(prompt: str, max_tokens: int = 100):
result = llm.generate(
prompt,
max_new_tokens=max_tokens,
temperature=0.7
)
return {"response": result}
# Run: uvicorn api:app --host 0.0.0.0 --port 8000
When to use vs alternatives
Use LitGPT when:
- Want to understand LLM architectures (clean, readable code)
- Need production-ready training recipes
- Educational purposes or research
- Prototyping new model ideas
- Lightning ecosystem user
Use alternatives instead:
- Axolotl/TRL: More fine-tuning features, YAML configs
- Megatron-Core: Maximum performance for >70B models
- HuggingFace Transformers: Broadest model support
- vLLM: Inference-only (no training)
Common issues
Issue: Out of memory during fine-tuning
Use LoRA instead of full fine-tuning:
# Instead of litgpt finetune (requires 40GB+)
litgpt finetune_lora # Only needs 12-16GB
Or enable gradient checkpointing:
litgpt finetune_lora \
... \
--train.gradient_accumulation_iters 4 # Accumulate gradients
Issue: Training too slow
Enable Flash Attention (built-in, automatic on compatible hardware):
# Already enabled by default on Ampere+ GPUs (A100, RTX 30/40 series)
# No configuration needed
Use smaller micro-batch and accumulate:
--train.micro_batch_size 1 \
--train.global_batch_size 32 \
--train.gradient_accumulation_iters 32 # Effective batch=32
Issue: Model not loading
Check model name:
# List all available models
litgpt download list
# Download if not exists
litgpt download meta-llama/Meta-Llama-3-8B
Verify checkpoints directory:
ls checkpoints/
# Should see: meta-llama/Meta-Llama-3-8B/
Issue: LoRA adapters too large
Reduce LoRA rank:
--lora_r 8 # Instead of 16 or 32
Apply LoRA to fewer layers:
--lora_query true \
--lora_value true \
--lora_projection false \ # Disable this
--lora_mlp false # And this
Advanced topics
Supported architectures: See references/supported-models.md for complete list of 20+ model families with sizes and capabilities.
Training recipes: See references/training-recipes.md for proven hyperparameter configurations for pretraining and fine-tuning.
FSDP configuration: See references/distributed-training.md for multi-GPU training with Fully Sharded Data Parallel.
Custom architectures: See references/custom-models.md for implementing new model architectures in LitGPT style.
Hardware requirements
- GPU: NVIDIA (CUDA 11.8+), AMD (ROCm), Apple Silicon (MPS)
- Memory:
- Inference (Phi-2): 6GB
- LoRA fine-tuning (7B): 16GB
- Full fine-tuning (7B): 40GB+
- Pretraining (1B): 24GB
- Storage: 5-50GB per model (depending on size)
Resources
- GitHub: https://github.com/Lightning-AI/litgpt
- Docs: https://lightning.ai/docs/litgpt
- Tutorials: https://lightning.ai/docs/litgpt/tutorials
- Model zoo: 20+ pretrained architectures (Llama, Gemma, Phi, Qwen, Mistral, Mixtral, Falcon, etc.)
More by davila7
View allAgile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
