Facebook's library for efficient similarity search and clustering of dense vectors. Supports billions of vectors, GPU acceleration, and various index types (Flat, IVF, HNSW). Use for fast k-NN search, large-scale vector retrieval, or when you need pure similarity search without metadata. Best for high-performance applications.
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: faiss description: Facebook's library for efficient similarity search and clustering of dense vectors. Supports billions of vectors, GPU acceleration, and various index types (Flat, IVF, HNSW). Use for fast k-NN search, large-scale vector retrieval, or when you need pure similarity search without metadata. Best for high-performance applications. version: 1.0.0 author: Orchestra Research license: MIT tags: [RAG, FAISS, Similarity Search, Vector Search, Facebook AI, GPU Acceleration, Billion-Scale, K-NN, HNSW, High Performance, Large Scale] dependencies: [faiss-cpu, faiss-gpu, numpy]
FAISS - Efficient Similarity Search
Facebook AI's library for billion-scale vector similarity search.
When to use FAISS
Use FAISS when:
- Need fast similarity search on large vector datasets (millions/billions)
- GPU acceleration required
- Pure vector similarity (no metadata filtering needed)
- High throughput, low latency critical
- Offline/batch processing of embeddings
Metrics:
- 31,700+ GitHub stars
- Meta/Facebook AI Research
- Handles billions of vectors
- C++ with Python bindings
Use alternatives instead:
- Chroma/Pinecone: Need metadata filtering
- Weaviate: Need full database features
- Annoy: Simpler, fewer features
Quick start
Installation
# CPU only
pip install faiss-cpu
# GPU support
pip install faiss-gpu
Basic usage
import faiss
import numpy as np
# Create sample data (1000 vectors, 128 dimensions)
d = 128
nb = 1000
vectors = np.random.random((nb, d)).astype('float32')
# Create index
index = faiss.IndexFlatL2(d) # L2 distance
index.add(vectors) # Add vectors
# Search
k = 5 # Find 5 nearest neighbors
query = np.random.random((1, d)).astype('float32')
distances, indices = index.search(query, k)
print(f"Nearest neighbors: {indices}")
print(f"Distances: {distances}")
Index types
1. Flat (exact search)
# L2 (Euclidean) distance
index = faiss.IndexFlatL2(d)
# Inner product (cosine similarity if normalized)
index = faiss.IndexFlatIP(d)
# Slowest, most accurate
2. IVF (inverted file) - Fast approximate
# Create quantizer
quantizer = faiss.IndexFlatL2(d)
# IVF index with 100 clusters
nlist = 100
index = faiss.IndexIVFFlat(quantizer, d, nlist)
# Train on data
index.train(vectors)
# Add vectors
index.add(vectors)
# Search (nprobe = clusters to search)
index.nprobe = 10
distances, indices = index.search(query, k)
3. HNSW (Hierarchical NSW) - Best quality/speed
# HNSW index
M = 32 # Number of connections per layer
index = faiss.IndexHNSWFlat(d, M)
# No training needed
index.add(vectors)
# Search
distances, indices = index.search(query, k)
4. Product Quantization - Memory efficient
# PQ reduces memory by 16-32×
m = 8 # Number of subquantizers
nbits = 8
index = faiss.IndexPQ(d, m, nbits)
# Train and add
index.train(vectors)
index.add(vectors)
Save and load
# Save index
faiss.write_index(index, "large.index")
# Load index
index = faiss.read_index("large.index")
# Continue using
distances, indices = index.search(query, k)
GPU acceleration
# Single GPU
res = faiss.StandardGpuResources()
index_cpu = faiss.IndexFlatL2(d)
index_gpu = faiss.index_cpu_to_gpu(res, 0, index_cpu) # GPU 0
# Multi-GPU
index_gpu = faiss.index_cpu_to_all_gpus(index_cpu)
# 10-100× faster than CPU
LangChain integration
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
# Create FAISS vector store
vectorstore = FAISS.from_documents(docs, OpenAIEmbeddings())
# Save
vectorstore.save_local("faiss_index")
# Load
vectorstore = FAISS.load_local(
"faiss_index",
OpenAIEmbeddings(),
allow_dangerous_deserialization=True
)
# Search
results = vectorstore.similarity_search("query", k=5)
LlamaIndex integration
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss
# Create FAISS index
d = 1536
faiss_index = faiss.IndexFlatL2(d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
Best practices
- Choose right index type - Flat for <10K, IVF for 10K-1M, HNSW for quality
- Normalize for cosine - Use IndexFlatIP with normalized vectors
- Use GPU for large datasets - 10-100× faster
- Save trained indices - Training is expensive
- Tune nprobe/ef_search - Balance speed/accuracy
- Monitor memory - PQ for large datasets
- Batch queries - Better GPU utilization
Performance
| Index Type | Build Time | Search Time | Memory | Accuracy |
|---|---|---|---|---|
| Flat | Fast | Slow | High | 100% |
| IVF | Medium | Fast | Medium | 95-99% |
| HNSW | Slow | Fastest | High | 99% |
| PQ | Medium | Fast | Low | 90-95% |
Resources
- GitHub: https://github.com/facebookresearch/faiss ⭐ 31,700+
- Wiki: https://github.com/facebookresearch/faiss/wiki
- License: MIT
More by davila7
View allAgile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
