Expert guidance for fine-tuning LLMs with Axolotl - YAML configs, 100+ models, LoRA/QLoRA, DPO/KTO/ORPO/GRPO, multimodal support
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: axolotl description: Expert guidance for fine-tuning LLMs with Axolotl - YAML configs, 100+ models, LoRA/QLoRA, DPO/KTO/ORPO/GRPO, multimodal support version: 1.0.0 author: Orchestra Research license: MIT tags: [Fine-Tuning, Axolotl, LLM, LoRA, QLoRA, DPO, KTO, ORPO, GRPO, YAML, HuggingFace, DeepSpeed, Multimodal] dependencies: [axolotl, torch, transformers, datasets, peft, accelerate, deepspeed]
Axolotl Skill
Comprehensive assistance with axolotl development, generated from official documentation.
When to Use This Skill
This skill should be triggered when:
- Working with axolotl
- Asking about axolotl features or APIs
- Implementing axolotl solutions
- Debugging axolotl code
- Learning axolotl best practices
Quick Reference
Common Patterns
Pattern 1: To validate that acceptable data transfer speeds exist for your training job, running NCCL Tests can help pinpoint bottlenecks, for example:
./build/all_reduce_perf -b 8 -e 128M -f 2 -g 3
Pattern 2: Configure your model to use FSDP in the Axolotl yaml. For example:
fsdp_version: 2
fsdp_config:
offload_params: true
state_dict_type: FULL_STATE_DICT
auto_wrap_policy: TRANSFORMER_BASED_WRAP
transformer_layer_cls_to_wrap: LlamaDecoderLayer
reshard_after_forward: true
Pattern 3: The context_parallel_size should be a divisor of the total number of GPUs. For example:
context_parallel_size
Pattern 4: For example: - With 8 GPUs and no sequence parallelism: 8 different batches processed per step - With 8 GPUs and context_parallel_size=4: Only 2 different batches processed per step (each split across 4 GPUs) - If your per-GPU micro_batch_size is 2, the global batch size decreases from 16 to 4
context_parallel_size=4
Pattern 5: Setting save_compressed: true in your configuration enables saving models in a compressed format, which: - Reduces disk space usage by approximately 40% - Maintains compatibility with vLLM for accelerated inference - Maintains compatibility with llmcompressor for further optimization (example: quantization)
save_compressed: true
Pattern 6: Note It is not necessary to place your integration in the integrations folder. It can be in any location, so long as it’s installed in a package in your python env. See this repo for an example: https://github.com/axolotl-ai-cloud/diff-transformer
integrations
Pattern 7: Handle both single-example and batched data. - single example: sample[‘input_ids’] is a list[int] - batched data: sample[‘input_ids’] is a list[list[int]]
utils.trainer.drop_long_seq(sample, sequence_len=2048, min_sequence_len=2)
Example Code Patterns
Example 1 (python):
cli.cloud.modal_.ModalCloud(config, app=None)
Example 2 (python):
cli.cloud.modal_.run_cmd(cmd, run_folder, volumes=None)
Example 3 (python):
core.trainers.base.AxolotlTrainer(
*_args,
bench_data_collator=None,
eval_data_collator=None,
dataset_tags=None,
**kwargs,
)
Example 4 (python):
core.trainers.base.AxolotlTrainer.log(logs, start_time=None)
Example 5 (python):
prompt_strategies.input_output.RawInputOutputPrompter()
Reference Files
This skill includes comprehensive documentation in references/:
- api.md - Api documentation
- dataset-formats.md - Dataset-Formats documentation
- other.md - Other documentation
Use view to read specific reference files when detailed information is needed.
Working with This Skill
For Beginners
Start with the getting_started or tutorials reference files for foundational concepts.
For Specific Features
Use the appropriate category reference file (api, guides, etc.) for detailed information.
For Code Examples
The quick reference section above contains common patterns extracted from the official docs.
Resources
references/
Organized documentation extracted from official sources. These files contain:
- Detailed explanations
- Code examples with language annotations
- Links to original documentation
- Table of contents for quick navigation
scripts/
Add helper scripts here for common automation tasks.
assets/
Add templates, boilerplate, or example projects here.
Notes
- This skill was automatically generated from official documentation
- Reference files preserve the structure and examples from source docs
- Code examples include language detection for better syntax highlighting
- Quick reference patterns are extracted from common usage examples in the docs
Updating
To refresh this skill with updated documentation:
- Re-run the scraper with the same configuration
- The skill will be rebuilt with the latest information
More by davila7
View allAgile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
Multi-channel demand generation, paid media optimization, SEO strategy, and partnership programs for Series A+ startups. Includes CAC calculator, channel playbooks, HubSpot integration, and international expansion tactics. Use when planning demand generation campaigns, optimizing paid media, building SEO strategies, establishing partnerships, or when user mentions demand gen, paid ads, LinkedIn ads, Google ads, CAC, acquisition, lead generation, or pipeline generation.
