catlog22

skill-tuning

@catlog22/skill-tuning
catlog22
1,008
86 forks
Updated 1/18/2026
View on GitHub

Universal skill diagnosis and optimization tool. Detect and fix skill execution issues including context explosion, long-tail forgetting, data flow disruption, and agent coordination failures. Supports Gemini CLI for deep analysis. Triggers on "skill tuning", "tune skill", "skill diagnosis", "optimize skill", "skill debug".

Installation

$skills install @catlog22/skill-tuning
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Path.claude/skills/skill-tuning/SKILL.md
Branchmain
Scoped Name@catlog22/skill-tuning

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: skill-tuning description: Universal skill diagnosis and optimization tool. Detect and fix skill execution issues including context explosion, long-tail forgetting, data flow disruption, and agent coordination failures. Supports Gemini CLI for deep analysis. Triggers on "skill tuning", "tune skill", "skill diagnosis", "optimize skill", "skill debug". allowed-tools: Task, AskUserQuestion, Read, Write, Bash, Glob, Grep, mcp__ace-tool__search_context

Skill Tuning

Universal skill diagnosis and optimization tool that identifies and resolves skill execution problems through iterative multi-agent analysis.

Architecture Overview

┌─────────────────────────────────────────────────────────────────────────────┐
│  Skill Tuning Architecture (Autonomous Mode + Gemini CLI)                    │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  ⚠️ Phase 0: Specification  → 阅读规范 + 理解目标 skill 结构 (强制前置)       │
│              Study                                                           │
│           ↓                                                                  │
│  ┌───────────────────────────────────────────────────────────────────────┐  │
│  │                    Orchestrator (状态驱动决策)                          │  │
│  │  读取诊断状态 → 选择下一步动作 → 执行 → 更新状态 → 循环直到完成         │  │
│  └───────────────────────────────────────────────────────────────────────┘  │
│                              │                                               │
│     ┌────────────┬───────────┼───────────┬────────────┬────────────┐        │
│     ↓            ↓           ↓           ↓            ↓            ↓        │
│  ┌──────┐  ┌──────────┐  ┌─────────┐  ┌────────┐  ┌────────┐  ┌─────────┐  │
│  │ Init │→ │ Analyze  │→ │Diagnose │  │Diagnose│  │Diagnose│  │ Gemini  │  │
│  │      │  │Requiremts│  │ Context │  │ Memory │  │DataFlow│  │Analysis │  │
│  └──────┘  └──────────┘  └─────────┘  └────────┘  └────────┘  └─────────┘  │
│                 │              │           │           │            │        │
│                 │              └───────────┴───────────┴────────────┘        │
│                 ↓                                                            │
│  ┌───────────────────────────────────────────────────────────────────────┐  │
│  │  Requirement Analysis (NEW)                                            │  │
│  │  • Phase 1: 维度拆解 (Gemini CLI) - 单一描述 → 多个关注维度             │  │
│  │  • Phase 2: Spec 匹配 - 每个维度 → taxonomy + strategy                 │  │
│  │  • Phase 3: 覆盖度评估 - 以"有修复策略"为满足标准                       │  │
│  │  • Phase 4: 歧义检测 - 识别多义性描述,必要时请求澄清                   │  │
│  └───────────────────────────────────────────────────────────────────────┘  │
│                              ↓                                               │
│                    ┌──────────────────┐                                      │
│                    │  Apply Fixes +   │                                      │
│                    │  Verify Results  │                                      │
│                    └──────────────────┘                                      │
│                                                                              │
│  ┌───────────────────────────────────────────────────────────────────────┐  │
│  │                    Gemini CLI Integration                              │  │
│  │  根据用户需求动态调用 gemini cli 进行深度分析:                          │  │
│  │  • 需求维度拆解 (requirement decomposition)                             │  │
│  │  • 复杂问题分析 (prompt engineering, architecture review)               │  │
│  │  • 代码模式识别 (pattern matching, anti-pattern detection)              │  │
│  │  • 修复策略生成 (fix generation, refactoring suggestions)               │  │
│  └───────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘

Problem Domain

Based on comprehensive analysis, skill-tuning addresses core skill issues and general optimization areas:

Core Skill Issues (自动检测)

PriorityProblemRoot CauseSolution Strategy
P0Authoring Principles Violation中间文件存储, State膨胀, 文件中转eliminate_intermediate_files, minimize_state, context_passing
P1Data Flow DisruptionScattered state, inconsistent formatsstate_centralization, schema_enforcement
P2Agent CoordinationFragile call chains, merge complexityerror_wrapping, result_validation
P3Context ExplosionToken accumulation, multi-turn bloatsliding_window, context_summarization
P4Long-tail ForgettingEarly constraint lossconstraint_injection, checkpoint_restore
P5Token ConsumptionVerbose prompts, excessive state, redundant I/Oprompt_compression, lazy_loading, output_minimization

General Optimization Areas (按需分析 via Gemini CLI)

CategoryIssuesGemini Analysis Scope
Prompt Engineering模糊指令, 输出格式不一致, 幻觉风险提示词优化, 结构化输出设计
Architecture阶段划分不合理, 依赖混乱, 扩展性差架构审查, 模块化建议
Performance执行慢, Token消耗高, 重复计算性能分析, 缓存策略
Error Handling错误恢复不当, 无降级策略, 日志不足容错设计, 可观测性增强
Output Quality输出不稳定, 格式漂移, 质量波动质量门控, 验证机制
User Experience交互不流畅, 反馈不清晰, 进度不可见UX优化, 进度追踪

Key Design Principles

  1. Problem-First Diagnosis: Systematic identification before any fix attempt
  2. Data-Driven Analysis: Record execution traces, token counts, state snapshots
  3. Iterative Refinement: Multiple tuning rounds until quality gates pass
  4. Non-Destructive: All changes are reversible with backup checkpoints
  5. Agent Coordination: Use specialized sub-agents for each diagnosis type
  6. Gemini CLI On-Demand: Deep analysis via CLI for complex/custom issues

Gemini CLI Integration

根据用户需求动态调用 Gemini CLI 进行深度分析。

Trigger Conditions

ConditionActionCLI Mode
用户描述复杂问题调用 Gemini 分析问题根因analysis
自动诊断发现 critical 问题请求深度分析确认analysis
用户请求架构审查执行架构分析analysis
需要生成修复代码生成修复提案write
标准策略不适用请求定制化策略analysis

CLI Command Template

ccw cli -p "
PURPOSE: ${purpose}
TASK: ${task_steps}
MODE: ${mode}
CONTEXT: @${skill_path}/**/*
EXPECTED: ${expected_output}
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/${mode}-protocol.md) | ${constraints}
" --tool gemini --mode ${mode} --cd ${skill_path}

Analysis Types

1. Problem Root Cause Analysis

ccw cli -p "
PURPOSE: Identify root cause of skill execution issue: ${user_issue_description}
TASK: • Analyze skill structure and phase flow • Identify anti-patterns • Trace data flow issues
MODE: analysis
CONTEXT: @**/*.md
EXPECTED: JSON with { root_causes: [], patterns_found: [], recommendations: [] }
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) | Focus on execution flow
" --tool gemini --mode analysis

2. Architecture Review

ccw cli -p "
PURPOSE: Review skill architecture for scalability and maintainability
TASK: • Evaluate phase decomposition • Check state management patterns • Assess agent coordination
MODE: analysis
CONTEXT: @**/*.md
EXPECTED: Architecture assessment with improvement recommendations
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) | Focus on modularity
" --tool gemini --mode analysis

3. Fix Strategy Generation

ccw cli -p "
PURPOSE: Generate fix strategy for issue: ${issue_id} - ${issue_description}
TASK: • Analyze issue context • Design fix approach • Generate implementation plan
MODE: analysis
CONTEXT: @**/*.md
EXPECTED: JSON with { strategy: string, changes: [], verification_steps: [] }
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) | Minimal invasive changes
" --tool gemini --mode analysis

Mandatory Prerequisites

CRITICAL: Read these documents before executing any action.

Core Specs (Required)

DocumentPurposePriority
specs/skill-authoring-principles.md首要准则:简洁高效、去除存储、上下文流转P0
specs/problem-taxonomy.mdProblem classification and detection patternsP0
specs/tuning-strategies.mdFix strategies for each problem typeP0
specs/dimension-mapping.mdDimension to Spec mapping rulesP0
specs/quality-gates.mdQuality thresholds and verification criteriaP1

Templates (Reference)

DocumentPurpose
templates/diagnosis-report.mdDiagnosis report structure
templates/fix-proposal.mdFix proposal format

Execution Flow

┌─────────────────────────────────────────────────────────────────────────────┐
│  Phase 0: Specification Study (强制前置 - 禁止跳过)                           │
│  → Read: specs/problem-taxonomy.md (问题分类)                                │
│  → Read: specs/tuning-strategies.md (调优策略)                               │
│  → Read: specs/dimension-mapping.md (维度映射规则)                           │
│  → Read: Target skill's SKILL.md and phases/*.md                            │
│  → Output: 内化规范,理解目标 skill 结构                                      │
├─────────────────────────────────────────────────────────────────────────────┤
│  action-init: Initialize Tuning Session                                      │
│  → Create work directory: .workflow/.scratchpad/skill-tuning-{timestamp}    │
│  → Initialize state.json with target skill info                             │
│  → Create backup of target skill files                                       │
├─────────────────────────────────────────────────────────────────────────────┤
│  action-analyze-requirements: Requirement Analysis                           │
│  → Phase 1: 维度拆解 (Gemini CLI) - 单一描述 → 多个关注维度                   │
│  → Phase 2: Spec 匹配 - 每个维度 → taxonomy + strategy                       │
│  → Phase 3: 覆盖度评估 - 以"有修复策略"为满足标准                             │
│  → Phase 4: 歧义检测 - 识别多义性描述,必要时请求澄清                         │
│  → Output: state.json (requirement_analysis field)                           │
├─────────────────────────────────────────────────────────────────────────────┤
│  action-diagnose-*: Diagnosis Actions (context/memory/dataflow/agent/docs/   │
│                      token_consumption)                                      │
│  → Execute pattern-based detection for each category                         │
│  → Output: state.json (diagnosis.{category} field)                           │
├─────────────────────────────────────────────────────────────────────────────┤
│  action-generate-report: Consolidated Report                                 │
│  → Generate markdown summary from state.diagnosis                            │
│  → Prioritize issues by severity                                             │
│  → Output: state.json (final_report field)                                   │
├─────────────────────────────────────────────────────────────────────────────┤
│  action-propose-fixes: Fix Proposal Generation                               │
│  → Generate fix strategies for each issue                                    │
│  → Create implementation plan                                                │
│  → Output: state.json (proposed_fixes field)                                 │
├─────────────────────────────────────────────────────────────────────────────┤
│  action-apply-fix: Apply Selected Fix                                        │
│  → User selects fix to apply                                                 │
│  → Execute fix with backup                                                   │
│  → Update state with fix result                                              │
├─────────────────────────────────────────────────────────────────────────────┤
│  action-verify: Verification                                                 │
│  → Re-run affected diagnosis                                                 │
│  → Check quality gates                                                       │
│  → Update iteration count                                                    │
├─────────────────────────────────────────────────────────────────────────────┤
│  action-complete: Finalization                                               │
│  → Set status='completed'                                                    │
│  → Final report already in state.json (final_report field)                   │
│  → Output: state.json (final)                                                │
└─────────────────────────────────────────────────────────────────────────────┘

Directory Setup

const timestamp = new Date().toISOString().slice(0,19).replace(/[-:T]/g, '');
const workDir = `.workflow/.scratchpad/skill-tuning-${timestamp}`;

// Simplified: Only backups dir needed, diagnosis results go into state.json
Bash(`mkdir -p "${workDir}/backups"`);

Output Structure

.workflow/.scratchpad/skill-tuning-{timestamp}/
├── state.json                      # Single source of truth (all results consolidated)
│   ├── diagnosis.*                 # All diagnosis results embedded
│   ├── issues[]                    # Found issues
│   ├── proposed_fixes[]            # Fix proposals
│   └── final_report                # Markdown summary (on completion)
└── backups/
    └── {skill-name}-backup/        # Original skill files backup

Token Optimization: All outputs consolidated into state.json. No separate diagnosis files or report files.

State Schema

详细状态结构定义请参阅 phases/state-schema.md

核心状态字段:

  • status: 工作流状态 (pending/running/completed/failed)
  • target_skill: 目标 skill 信息
  • diagnosis: 各维度诊断结果
  • issues: 发现的问题列表
  • proposed_fixes: 建议的修复方案

Reference Documents

DocumentPurpose
phases/orchestrator.mdOrchestrator decision logic
phases/state-schema.mdState structure definition
phases/actions/action-init.mdInitialize tuning session
phases/actions/action-analyze-requirements.mdRequirement analysis (NEW)
phases/actions/action-diagnose-context.mdContext explosion diagnosis
phases/actions/action-diagnose-memory.mdLong-tail forgetting diagnosis
phases/actions/action-diagnose-dataflow.mdData flow diagnosis
phases/actions/action-diagnose-agent.mdAgent coordination diagnosis
phases/actions/action-diagnose-docs.mdDocumentation structure diagnosis
phases/actions/action-diagnose-token-consumption.mdToken consumption diagnosis
phases/actions/action-generate-report.mdReport generation
phases/actions/action-propose-fixes.mdFix proposal
phases/actions/action-apply-fix.mdFix application
phases/actions/action-verify.mdVerification
phases/actions/action-complete.mdFinalization
specs/problem-taxonomy.mdProblem classification
specs/tuning-strategies.mdFix strategies
specs/dimension-mapping.mdDimension to Spec mapping (NEW)
specs/quality-gates.mdQuality criteria