Build and train machine learning models using scikit-learn, PyTorch, and TensorFlow for classification, regression, and clustering tasks
Installation
Details
Usage
After installing, this skill will be available to your AI coding assistant.
Verify installation:
skills listSkill Instructions
name: ML Model Training description: Build and train machine learning models using scikit-learn, PyTorch, and TensorFlow for classification, regression, and clustering tasks
ML Model Training
Training machine learning models involves selecting appropriate algorithms, preparing data, and optimizing model parameters to achieve strong predictive performance.
Training Phases
- Data Preparation: Cleaning, encoding, normalization
- Feature Engineering: Creating meaningful features
- Model Selection: Choosing appropriate algorithms
- Hyperparameter Tuning: Optimizing model settings
- Validation: Cross-validation and evaluation metrics
- Deployment: Preparing models for production
Common Algorithms
- Regression: Linear, Ridge, Lasso, Random Forest
- Classification: Logistic, SVM, Random Forest, Gradient Boosting
- Clustering: K-Means, DBSCAN, Hierarchical
- Neural Networks: MLPs, CNNs, RNNs, Transformers
Python Implementation
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (accuracy_score, precision_score, recall_score,
f1_score, confusion_matrix, roc_auc_score)
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset
import tensorflow as tf
from tensorflow import keras
# 1. Generate synthetic dataset
np.random.seed(42)
n_samples = 1000
n_features = 20
X = np.random.randn(n_samples, n_features)
y = (X[:, 0] + X[:, 1] - X[:, 2] + np.random.randn(n_samples) * 0.5 > 0).astype(int)
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Normalize features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
print("Dataset shapes:")
print(f"Training: {X_train_scaled.shape}, Testing: {X_test_scaled.shape}")
print(f"Class distribution: {np.bincount(y_train)}")
# 2. Scikit-learn models
print("\n=== Scikit-learn Models ===")
models = {
'Logistic Regression': LogisticRegression(max_iter=1000),
'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
'Gradient Boosting': GradientBoostingClassifier(n_estimators=100, random_state=42),
}
sklearn_results = {}
for name, model in models.items():
model.fit(X_train_scaled, y_train)
y_pred = model.predict(X_test_scaled)
y_pred_proba = model.predict_proba(X_test_scaled)[:, 1]
sklearn_results[name] = {
'accuracy': accuracy_score(y_test, y_pred),
'precision': precision_score(y_test, y_pred),
'recall': recall_score(y_test, y_pred),
'f1': f1_score(y_test, y_pred),
'roc_auc': roc_auc_score(y_test, y_pred_proba)
}
print(f"\n{name}:")
for metric, value in sklearn_results[name].items():
print(f" {metric}: {value:.4f}")
# 3. PyTorch neural network
print("\n=== PyTorch Model ===")
class NeuralNetPyTorch(nn.Module):
def __init__(self, input_size):
super().__init__()
self.fc1 = nn.Linear(input_size, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 1)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.3)
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.relu(self.fc2(x))
x = self.dropout(x)
x = torch.sigmoid(self.fc3(x))
return x
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pytorch_model = NeuralNetPyTorch(n_features).to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(pytorch_model.parameters(), lr=0.001)
# Create data loaders
train_dataset = TensorDataset(torch.FloatTensor(X_train_scaled),
torch.FloatTensor(y_train).unsqueeze(1))
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# Train PyTorch model
epochs = 50
pytorch_losses = []
for epoch in range(epochs):
total_loss = 0
for batch_X, batch_y in train_loader:
batch_X, batch_y = batch_X.to(device), batch_y.to(device)
optimizer.zero_grad()
outputs = pytorch_model(batch_X)
loss = criterion(outputs, batch_y)
loss.backward()
optimizer.step()
total_loss += loss.item()
pytorch_losses.append(total_loss / len(train_loader))
if (epoch + 1) % 10 == 0:
print(f"Epoch {epoch + 1}/{epochs}, Loss: {pytorch_losses[-1]:.4f}")
# Evaluate PyTorch
pytorch_model.eval()
with torch.no_grad():
y_pred_pytorch = pytorch_model(torch.FloatTensor(X_test_scaled).to(device))
y_pred_pytorch = (y_pred_pytorch.cpu().numpy() > 0.5).astype(int).flatten()
print(f"\nPyTorch Accuracy: {accuracy_score(y_test, y_pred_pytorch):.4f}")
# 4. TensorFlow/Keras model
print("\n=== TensorFlow/Keras Model ===")
tf_model = keras.Sequential([
keras.layers.Dense(64, activation='relu', input_shape=(n_features,)),
keras.layers.Dropout(0.3),
keras.layers.Dense(32, activation='relu'),
keras.layers.Dropout(0.3),
keras.layers.Dense(1, activation='sigmoid')
])
tf_model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy']
)
history = tf_model.fit(
X_train_scaled, y_train,
batch_size=32,
epochs=50,
validation_split=0.2,
verbose=0
)
y_pred_tf = (tf_model.predict(X_test_scaled) > 0.5).astype(int).flatten()
print(f"TensorFlow Accuracy: {accuracy_score(y_test, y_pred_tf):.4f}")
# 5. Visualization
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Model comparison
models_names = list(sklearn_results.keys()) + ['PyTorch', 'TensorFlow']
accuracies = [sklearn_results[m]['accuracy'] for m in sklearn_results.keys()] + \
[accuracy_score(y_test, y_pred_pytorch),
accuracy_score(y_test, y_pred_tf)]
axes[0, 0].bar(range(len(models_names)), accuracies, color='steelblue')
axes[0, 0].set_xticks(range(len(models_names)))
axes[0, 0].set_xticklabels(models_names, rotation=45)
axes[0, 0].set_ylabel('Accuracy')
axes[0, 0].set_title('Model Comparison')
axes[0, 0].set_ylim([0, 1])
# Training loss curves
axes[0, 1].plot(pytorch_losses, label='PyTorch', linewidth=2)
axes[0, 1].plot(history.history['loss'], label='TensorFlow', linewidth=2)
axes[0, 1].set_xlabel('Epoch')
axes[0, 1].set_ylabel('Loss')
axes[0, 1].set_title('Training Loss Comparison')
axes[0, 1].legend()
axes[0, 1].grid(True, alpha=0.3)
# Scikit-learn metrics
metrics = ['accuracy', 'precision', 'recall', 'f1']
rf_metrics = [sklearn_results['Random Forest'][m] for m in metrics]
axes[1, 0].bar(metrics, rf_metrics, color='coral')
axes[1, 0].set_ylabel('Score')
axes[1, 0].set_title('Random Forest Metrics')
axes[1, 0].set_ylim([0, 1])
# Validation accuracy over epochs
axes[1, 1].plot(history.history['accuracy'], label='Training', linewidth=2)
axes[1, 1].plot(history.history['val_accuracy'], label='Validation', linewidth=2)
axes[1, 1].set_xlabel('Epoch')
axes[1, 1].set_ylabel('Accuracy')
axes[1, 1].set_title('TensorFlow Training History')
axes[1, 1].legend()
axes[1, 1].grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('model_training_comparison.png', dpi=100, bbox_inches='tight')
print("\nVisualization saved as 'model_training_comparison.png'")
print("\nModel training completed!")
Training Best Practices
- Data Split: 70/15/15 for train/validation/test
- Scaling: Normalize features before training
- Cross-validation: Use K-fold for robust evaluation
- Early Stopping: Prevent overfitting
- Class Balancing: Handle imbalanced datasets
Key Metrics
- Accuracy: Overall correctness
- Precision: Positive prediction accuracy
- Recall: True positive detection rate
- F1 Score: Harmonic mean of precision/recall
- ROC-AUC: Threshold-independent metric
Deliverables
- Trained model checkpoint
- Performance metrics on test set
- Feature importance analysis
- Learning curves
- Hyperparameter configuration
- Model evaluation report
More by benchflow-ai
View allRepair an (often imperfect) Flexible Job Shop Scheduling baseline into a downtime-feasible, precedence-correct schedule while staying within policy budgets and matching the evaluator’s exact metrics and “local minimal right-shift” checks.
Test Temporal workflows with pytest, time-skipping, and mocking strategies. Covers unit testing, integration testing, replay testing, and local development setup. Use when implementing Temporal workflow tests or debugging test failures.
Extract locational marginal prices (LMPs) from DC-OPF solutions using dual values. Use when computing nodal electricity prices, reserve clearing prices, or performing price impact analysis.
This skill should be used when the user asks to "design package structure", "create managed package", "configure 2GP", "set up namespace", "version management", or mentions managed package topics like "LMA", "subscriber orgs", or "package versioning". Provides comprehensive guidance for second-generation managed package (2GP) architecture, ISV development patterns, and package lifecycle management.
