alirezarezvani

senior-ml-engineer

@alirezarezvani/senior-ml-engineer
alirezarezvani
774
132 forks
Updated 1/18/2026
View on GitHub

World-class ML engineering skill for productionizing ML models, MLOps, and building scalable ML systems. Expertise in PyTorch, TensorFlow, model deployment, feature stores, model monitoring, and ML infrastructure. Includes LLM integration, fine-tuning, RAG systems, and agentic AI. Use when deploying ML models, building ML platforms, implementing MLOps, or integrating LLMs into production systems.

Installation

$skills install @alirezarezvani/senior-ml-engineer
Claude Code
Cursor
Copilot
Codex
Antigravity

Details

Pathengineering-team/senior-ml-engineer/SKILL.md
Branchmain
Scoped Name@alirezarezvani/senior-ml-engineer

Usage

After installing, this skill will be available to your AI coding assistant.

Verify installation:

skills list

Skill Instructions


name: senior-ml-engineer description: World-class ML engineering skill for productionizing ML models, MLOps, and building scalable ML systems. Expertise in PyTorch, TensorFlow, model deployment, feature stores, model monitoring, and ML infrastructure. Includes LLM integration, fine-tuning, RAG systems, and agentic AI. Use when deploying ML models, building ML platforms, implementing MLOps, or integrating LLMs into production systems.

Senior ML/AI Engineer

World-class senior ml/ai engineer skill for production-grade AI/ML/Data systems.

Quick Start

Main Capabilities

# Core Tool 1
python scripts/model_deployment_pipeline.py --input data/ --output results/

# Core Tool 2  
python scripts/rag_system_builder.py --target project/ --analyze

# Core Tool 3
python scripts/ml_monitoring_suite.py --config config.yaml --deploy

Core Expertise

This skill covers world-class capabilities in:

  • Advanced production patterns and architectures
  • Scalable system design and implementation
  • Performance optimization at scale
  • MLOps and DataOps best practices
  • Real-time processing and inference
  • Distributed computing frameworks
  • Model deployment and monitoring
  • Security and compliance
  • Cost optimization
  • Team leadership and mentoring

Tech Stack

Languages: Python, SQL, R, Scala, Go ML Frameworks: PyTorch, TensorFlow, Scikit-learn, XGBoost Data Tools: Spark, Airflow, dbt, Kafka, Databricks LLM Frameworks: LangChain, LlamaIndex, DSPy Deployment: Docker, Kubernetes, AWS/GCP/Azure Monitoring: MLflow, Weights & Biases, Prometheus Databases: PostgreSQL, BigQuery, Snowflake, Pinecone

Reference Documentation

1. Mlops Production Patterns

Comprehensive guide available in references/mlops_production_patterns.md covering:

  • Advanced patterns and best practices
  • Production implementation strategies
  • Performance optimization techniques
  • Scalability considerations
  • Security and compliance
  • Real-world case studies

2. Llm Integration Guide

Complete workflow documentation in references/llm_integration_guide.md including:

  • Step-by-step processes
  • Architecture design patterns
  • Tool integration guides
  • Performance tuning strategies
  • Troubleshooting procedures

3. Rag System Architecture

Technical reference guide in references/rag_system_architecture.md with:

  • System design principles
  • Implementation examples
  • Configuration best practices
  • Deployment strategies
  • Monitoring and observability

Production Patterns

Pattern 1: Scalable Data Processing

Enterprise-scale data processing with distributed computing:

  • Horizontal scaling architecture
  • Fault-tolerant design
  • Real-time and batch processing
  • Data quality validation
  • Performance monitoring

Pattern 2: ML Model Deployment

Production ML system with high availability:

  • Model serving with low latency
  • A/B testing infrastructure
  • Feature store integration
  • Model monitoring and drift detection
  • Automated retraining pipelines

Pattern 3: Real-Time Inference

High-throughput inference system:

  • Batching and caching strategies
  • Load balancing
  • Auto-scaling
  • Latency optimization
  • Cost optimization

Best Practices

Development

  • Test-driven development
  • Code reviews and pair programming
  • Documentation as code
  • Version control everything
  • Continuous integration

Production

  • Monitor everything critical
  • Automate deployments
  • Feature flags for releases
  • Canary deployments
  • Comprehensive logging

Team Leadership

  • Mentor junior engineers
  • Drive technical decisions
  • Establish coding standards
  • Foster learning culture
  • Cross-functional collaboration

Performance Targets

Latency:

  • P50: < 50ms
  • P95: < 100ms
  • P99: < 200ms

Throughput:

  • Requests/second: > 1000
  • Concurrent users: > 10,000

Availability:

  • Uptime: 99.9%
  • Error rate: < 0.1%

Security & Compliance

  • Authentication & authorization
  • Data encryption (at rest & in transit)
  • PII handling and anonymization
  • GDPR/CCPA compliance
  • Regular security audits
  • Vulnerability management

Common Commands

# Development
python -m pytest tests/ -v --cov
python -m black src/
python -m pylint src/

# Training
python scripts/train.py --config prod.yaml
python scripts/evaluate.py --model best.pth

# Deployment
docker build -t service:v1 .
kubectl apply -f k8s/
helm upgrade service ./charts/

# Monitoring
kubectl logs -f deployment/service
python scripts/health_check.py

Resources

  • Advanced Patterns: references/mlops_production_patterns.md
  • Implementation Guide: references/llm_integration_guide.md
  • Technical Reference: references/rag_system_architecture.md
  • Automation Scripts: scripts/ directory

Senior-Level Responsibilities

As a world-class senior professional:

  1. Technical Leadership

    • Drive architectural decisions
    • Mentor team members
    • Establish best practices
    • Ensure code quality
  2. Strategic Thinking

    • Align with business goals
    • Evaluate trade-offs
    • Plan for scale
    • Manage technical debt
  3. Collaboration

    • Work across teams
    • Communicate effectively
    • Build consensus
    • Share knowledge
  4. Innovation

    • Stay current with research
    • Experiment with new approaches
    • Contribute to community
    • Drive continuous improvement
  5. Production Excellence

    • Ensure high availability
    • Monitor proactively
    • Optimize performance
    • Respond to incidents

More by alirezarezvani

View all
marketing-strategy-pmm
774

Product marketing, positioning, GTM strategy, and competitive intelligence. Includes ICP definition, April Dunford positioning methodology, launch playbooks, competitive battlecards, and international market entry guides. Use when developing positioning, planning product launches, creating messaging, analyzing competitors, entering new markets, enabling sales, or when user mentions product marketing, positioning, GTM, go-to-market, competitive analysis, market entry, or sales enablement.

agile-product-owner
774

Agile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.

senior-prompt-engineer
774

World-class prompt engineering skill for LLM optimization, prompt patterns, structured outputs, and AI product development. Expertise in Claude, GPT-4, prompt design patterns, few-shot learning, chain-of-thought, and AI evaluation. Includes RAG optimization, agent design, and LLM system architecture. Use when building AI products, optimizing LLM performance, designing agentic systems, or implementing advanced prompting techniques.

mdr-745-specialist
774

EU MDR 2017/745 regulation specialist and consultant for medical device requirement management. Provides comprehensive MDR compliance expertise, gap analysis, technical documentation guidance, clinical evidence requirements, and post-market surveillance implementation. Use for MDR compliance assessment, classification decisions, technical file preparation, and regulatory requirement interpretation.